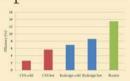

Wood Stoves for Guatemala

Redesigned Stove

Second prototy



Molded combustion chamber incorporating grate and ash tray

Cod As Control Standard Control Standard

- •Increased insulation throughout the stove
- Integrated elbow-shaped combustion chamber for more efficient combustion and better draft
- •Smaller air gap under stove top for better heat transfer
- •Incorporated grate for more heat transfer to air
- Ash tray for easier cleaning

Improved Efficiency

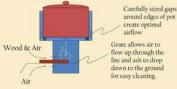
More than twice as efficient as the old stove, the redesigned stove uses only a fraction of the wood.

Reduced Emissions

Burning more cleanly, the new stove will further improve the quality of air inside the home environment and produce less soot in the chimney.

Offsite Construction

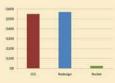
The combustion chamber is a strong but insulating mix of concrete and porous vermiculite. Meant to be east in molds in a central location, these can be can be made quickly in large batches and then transported to the respective stove sites This helps minimize on-site construction.


New Business Opportunity

By using a construction technique for the combustion chamber that is nearly identical to one for constructing a stand-alone rocket stove, we hope to create an opportunity for CES to make and sell rocket stoves.

The ability to bring one of the highly efficient rocket stoves into a village as a visible demonstration would create a new marketing technique for the larger stove. The CES stove could then be sold as a durable and more sizable upgrade built on the same technology as the rocket stove.

The Rocket Stove


A cheap, portable and efficient alternative to large wood burning stoves. It does not have the same character or durability of the larger stoves, but can serve a market larger market of uses who cannot afford the CES stove.

The Bucket Rocket

We built and tested a simple version of a rocket stove inside of a bucket. The pot sits on top of the stove, but since it lacks a skirt around the pot, a complete version of the stove would be even more efficient.

Very Low Cost

The rocket stove costs a small fraction of the cost of the original CES stove and the improved stove, making it a more economical option for poorer families.

F.W. Olin SCOPE Team

Our Partner

- · Development organization based in Guatemala
- · Helping Guatemalans help themselves
- · Offers a range of product lines and services
- Stimulates local economy by creating jobs and a market, rather than a relief model

The Problem

Half of rural Guatemalans still cook every meal over an open, indoor fire.

Health

- Dangerous CO and particulate emissions
- 36% of infant deaths are due to pneumonia (leading cause)¹
- Safety hazard people suffer burns from falling in

Economic

- 71%: live below the poverty line
 \$3,100: Annual income for family
- of 6

 \$400: Spent on wood for cooking per year
- e \$200. Spent on wood used per year with an improved stove

Quality of Life

- Collecting firewood takes significant time and effort
- Children have less time to
- attend school and study
 Female student drop out rates
- Female student drop out rate
 are up to 82% in rural areas¹

Original CES Stove

- "I used to get up at 5, now I get up at 6:30."
- "I used to buy two tareas of wood each month, now I buy less than one."

Strengths !

- Cost Savings
- · Reduced Emissions
- High Plancha
 Temperatures

Weaknesses

- · Low Efficiency
- · Plancha Bending
- Soot
- Cost

ey Efficiency (Cost of Use)

=
Desirability of Stove

Our Goal

Base Cost of Stove

- Safety and Health
-
- = 1 Ease of Construction

Building

The team built a version of the CES stove to understand manufacturing techniques and prepare for testing.

Testing

The stove was set up with various thermocouples, thermometers, and a combustion gas analyzer to gather data on the efficiency, boiling times, temperatures, and emissions of the CES stove.

The Team

(L-R) Carmelle Tsai, Greg Van Kirk (CEO of CES), Christopher Carrick, Stephen Westwood, Ryan Hubbard, Melina Martinez (Babson MBA, not pictured)

Advised by Professor Jessica Townsend