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We consider the evolution of a thin viscous fluid sheet subject to thermocapillary
effects. Using a lubrication approximation we find, for symmetric interfacial deflec-
tions, coupled evolution equations for the interfacial profile, the streamwise component
of the fluid velocity and the temperature variation along the surface. Initial tempera-
ture profiles change the initial flow field through Marangoni-induced shear stresses.
These changes then lead to preferred conditions for rupture prescribed by the initial
temperature distribution. We show that the time to rupture may be minimized by
varying the phase difference between the initial velocity profile and the initial
temperature profile. For sufficiently large temperature differences, the phase difference
between the initial velocity and temperature profiles determines the rupture location.

1. Introduction
In recent years, ink-jet printers have become a common and economical standard

for producing high-quality printed text and graphics. These printers typically employ
several different jets simultaneously, each made up of a different colour of ink;
arbitrary colours can therefore be generated by mixing the output of the jets in
different proportions. Since only one drop size is typically generated, the efficient
control of drop formation is an inherent requirement in the overall performance of the
system. The limitation on resolution of these devices depends on the reliable control
of the smallest drop size while the printing rate depends on the ability to control
the breakup phenomena both spatially and in time. A further application requiring
the delicate control of jet dynamics is the fabrication of high-density microelectronic
devices (Hayes, Wallace & Cox 1999; Molesa et al. 2003).

Herein, we consider the viability of using thermocapillary stresses to control both
droplet size and breakup. Thermocapillary forces have been previously employed
in a wide variety of applications. For example, Schatz & Neitzel (2001) reviewed
experimental investigations of problems with axial temperature gradients in liquid
bridges, and driven thermocapillary waves in slots. Temperature profiles have also
been used in the investigation of thermocapillary-induced non-wetting (see Sumner,
Wood & Neitzel 2003), the fingering instability found in thin films coating a substrate
(see Garnier, Grigoriev & Schatz 2003) and the manipulation of drops within a
viscous fluid (see Rybalko, Magome & Yoshikawa 2004).

† Present Address: Graduate School of Mathematical Sciences, University of Tokyo, Komaba,
Tokyo 153-8914, Japan.
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Figure 1. Schematic of the problem under consideration.

Since the characteristic thickness of the jets is typically around 10 µm, if a 1 mW
laser pulse is applied for 1 ms along a section of the jet (say 1 mm in length), then
the local temperature is increased by approximately 0.25 K. Although this is a small
temperature difference, the resulting induced shear stress is strong enough to alter
any initial inertial effects, and hence the fluid dynamics within the jet. Furthermore,
the experimental investigation of Nahas & Panton (1990) found that the symmetrical
heating of a larger water jet (of 2 mm radius) using a modulated laser can delay
the onset of the classical Rayleigh instability. Consequently, controlling the rupture
process for a thin jet by this mechanism is experimentally justifiable.

To focus on the competition between the thermally driven and inertially driven
instability mechanisms, we consider a symmetrically heated sheet (rather than a
radially symmetric jet), which results in no net bending. The application of the laser
results in a prescribed initial temperature profile from which the sheet evolves. The
spatial location of rupture is controlled through interfacial temperature gradients. We
find that this heating, along with a standard modulation in the axial velocity from
the nozzle, results in a better control of drop size than in the isothermal problem;
the evaporation time scale is assumed to be much longer than the viscous time scale
here.

Lubrication theory has been used to investigate the dynamics of thin liquid sheets
for nearly 40 years (see the reviews by Oron, Davis & Bankoff 1997 and Eggers 1997).
The rupture of sheets and threads, in a lubrication theory context (see, for example,
Erneux & Davis 1993), has been investigated in a variety of scenarios, including the
use of surfactants (Craster, Matar & Papageorgiou 2002), electric fields (see Tilley,
Petropoulus & Papageorgiou 2001, Savettaseranee et al. (2003), and Papageorgiou &
Vanden-Broeck 2004), nematic liquid crystalline jets (see Cheong, Rey & Mather 2001),
and van der Waals forces (Witelski & Bernoff (1999) and Vaynblat, Lister & Witelski
2001). In particular, Chwalek et al. (2002) used differential heating across a nozzle
exit to induce bending of a jet from the nozzle at a prescribed angle. Brenner &
Paruchuri (2003) then showed, through an equilibrium balance of net forces and
torques, that the maximum deflection of this jet (or sheet) coincided with a Weber
number of unity. The latter paper focused on altering the direction of the jet (or
sheet), but not on the differences in the rupture dynamics.

2. Problem formulation
Consider a symmetric disturbance of a heated viscous sheet, as illustrated in figure 1.

The equations that govern this system are the standard two-dimensional continuity
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and Navier–Stokes equations coupled to a conservation of energy equation,

∇ · u = 0, ut + u · ∇u = − 1

ρ
∇p + ν∇2u, (2.1)

Tt + u · ∇T = κ∇2T . (2.2)

Here, u = (u, w) is the fluid velocity, where u is the x-component and w is the z-
component, ρ is the fluid density, ν is the fluid kinematic viscosity, p is the fluid
pressure, T is the fluid temperature, and κ is the thermal diffusivity of the fluid.

As we are interested in symmetric disturbances, (2.1)–(2.2) are subject to the
symmetry boundary conditions uz = w = Tz = 0 at z = 0, corresponding to zero shear,
vanishing vertical velocity and zero vertical temperature gradient, respectively, across
the centre-line. Along the fluid interface z = h(x, t), we require that the tangential
stress is driven by gradients in surface tension

µ

1 + h2
x

{
(uz + wx)

(
1 − h2

x

)
− 4uxhx

}
= ∇σ · t, (2.3)

(where µ is the fluid dynamic viscosity) and that the normal stress is balanced by
surface tension times the curvature

−p +
2µ

1 + h2
x

{
ux

(
h2

x − 1
)

− hx(uz + wx)
}

= σ
hxx(

1 + h2
x

)3/2
. (2.4)

The reduced surface tension σ is a consequence of the imposed temperature gradients,
so that σ = σ0 − γ (T − T0), with γ being the rate at which surface tension depends
linearly on temperature and where T0 is the ambient temperature (corresponding to
surface tension σ0). The normal heat flux across the interface is given by Newton’s
law of cooling

k∇T · n = −H (T − T0), (2.5)

where k is the thermal conductivity and H is the heat transfer coefficient, while the
standard kinematic condition is stated as

ht +
∂

∂x

∫ h

0

u dz = 0. (2.6)

We non-dimensionalize our variables based on the following scales:

[x] = L, [z] = h0, [u] =
ν

h0

, [w] =
ν

L
, [t] =

Lh0

ν
, [p] =

ρν2

h2
0

, T − T0 = θ�T,

where �T is a measure of the heating of the sheet. In terms of the non-dimensionalized
variables, we find that

ux + wz = 0, (2.7)

ε{ut + uux + wuz} = −εpx + uzz + ε2uxx, (2.8)

ε2{wt + uwx + wwz} = −pz + ε{wzz + ε2wxx}, (2.9)

εPr{θt + uθx + wθz} = θzz + ε2θxx (2.10)

(ε = h0/L � 1 is the aspect ratio and Pr = ν/κ is the Prandtl number). We also have
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Dimensional scales

Parameter Value

h0 (cm) 10−3

L (cm) 10−1

�T (K) 10−2–0.2
ρ (g cm−3) 1
ν (cm2 s−1) 3 ×10−3

µ (g cm−1 s−1) 3 × 10−3

H (erg s−1 cm−2 K−1) 1 × 105

σ0 (dyn cm−1) 60
γ (dyn cm−1 K−1) 0.2
k (erg cm−1 s−1 K−1) 7 × 104

κ (cm2 s−1) 2 × 10−3

Dimensionless quantities

Quantity Value

ε 10−2

M 0.2–4.44
B 0.143
S 0.667
Pr 1.5

Table 1. Parameter values for a water sheet in c. g. s. units and the non-dimensional
equivalents.

uz = w = θz = 0 at z = 0 and free-surface boundary conditions:

(uz + ε2wx)
(
1 − ε2h2

x

)
− 4ε2uxhx = −εM (θx + hxθz)

√
1 + ε2h2

x, (2.11)

−p +
2ε

1 + ε2h2
x

{
ux

(
ε2h2

x − 1
)

− hx(uz + ε2wx)
}

= (S − ε2Mθ)
hxx(

1 + ε2h2
x

)3/2
, (2.12)

θz = −εBθ
√

1 + ε2h2
x + ε2θxhx, (2.13)

ht +
∂

∂x

∫ h

0

u dz = 0, (2.14)

on the interface z = h(x, t); M = (γ�T h0)/(µν) is the Marangoni number,
S = (h3

0σ0)/(µνL2) is the capillary number and B = (LH )/k is the Biot number.
In table 1 we show typical values of the physical parameters and their equivalent

non-dimensional values (see also Burelbach, Bankoff & Davis 1988). The value of the
Biot number corresponds to poor heat transport from the sheet to the surrounding
environment compared to heat transport along the sheet. In addition, the Marangoni
number M varies as a function of the initial heating of the fluid and, as indicated by
table 1, can vary over the approximate range 0.2 to 4.44.

Expanding all of the dependent variables in powers of ε

u = u0(x, z, t) + εu1(x, z, t) + · · · , w = w0(x, z, t) + εw1(x, z, t) + · · · ,
p = p0(x, z, t) + εp1(x, z, t) + · · · , θ = θ0(x, z, t) + εθ1(x, z, t) + · · · ,

and substituting into (2.7)–(2.10), yields, at leading order

u0zz = 0, p0z = 0, θ0zz = 0,

subject to the boundary conditions

z = 0 : u0z = w0 = θ0z = 0, (2.15)

z = h : u0z = θ0z = 0, p0 = −Shxx. (2.16)

From this system of equations, we find that

u0 = u0(x, t), p0 = −Shxx, w0 = −u0xz, θ0 = θ0(x, t).
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At O(ε), we find

w1z = −u1x, u1zz = p0x + u0t + u0u0x, p1z = 0, θ1zz = Pr{θ0t + u0θ0x}, (2.17a–d)

subject to the symmetry conditions u1z =w1 = θ1z =0 at z = 0, along with the following
interfacial conditions at z = h(x, t):

u1z = −Mθ0x, p1 = −2u0x, θ1z = −Bθ0. (2.18a–c)

Integrating (2.17a) and (2.17d) from z = 0 to z = h and using the stress conditions,
(2.18a) and (2.18c), we find evolution equations which govern the leading-order axial
velocity u0 and the average temperature θ0

u1z

∣∣h
0

= −Mθ0x = h{u0t + u0u0x + Shxxx},

θ1z

∣∣h
0

= −Bθ0 = h{Pr[θ0t + u0θ0x]}.

To close the system, we employ the kinematic condition (2.14) and so obtain the
following coupled equations for u0, θ0 and h:

u0t + u0u0x = Shxxx − M
θ0x

h
, (2.19)

Pr{θ0t + u0θ0x} = −Bθ0

h
, (2.20)

ht + {u0h}x = 0. (2.21)

In the isothermal situation, this system reduces to the system found by Matsuuchi
(1974, 1976), Pugh & Shelly (1998), and Mehring & Sirignano (1999). This system
yields quasi-periodic solutions for initial velocities below a critical value, but exhibits
finite-time singularities (due to a balance of inertial effects and surface tension effects)
when inertial effects are significant.

3. Results
In investigating the system (2.19)–(2.21) (we drop the zero subscripts in the following

for notational clarity), we restrict ourselves to spatially periodic boundary conditions
on the domain 0 � x � 2π. The typical mechanism to drive a cylindrical jet to rupture
in ink-jet printing applications is by modulation of the pressure near the nozzle exit.
We analogously model this phenomenon for a sheet by looking at an initial sinusoidal
variation of the axial velocity, u(x, 0) =U0 sin ku x, where U0 is the velocity resulting
from this pressure disturbance (or equivalently the Reynolds number of the flow) and
ku is the wavenumber of the velocity disturbance. Under typical operating conditions
of ink-jet printers, U0 ≈ 10. This magnitude reflects the desire to produce drops quickly
(short times to rupture), and not the minimum velocity magnitude at which rupture
can occur. For the isothermal version of (2.19)–(2.21), U0 ≈ 0.85 is the minimum value
for which rupture in this system can occur (see Tilley et al. 2001). We are interested
in how initial heating of the sheet affects the transient dynamics toward rupture.

We also assume there to be an initial temperature distribution across the sheet,

θ(x, z, 0) = sin kθ x,

which is induced after a period of localized heating; at leading order, we find no
z-variation in θ . The wavenumber of the temperature disturbance is denoted by kθ .
Note that since we scaled temperature on the initial difference between maximum
heating and ambient, this initial condition has unit amplitude. In this sense, the
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Figure 2. The initial transients at times t = 0.1 (solid curve), t =0.2 (dashed curve) and
t = 0.3 (dashed-dot curve) with M = S = Pr = 1: (a) interfacial deflection, (b) axial velocity,
(c) temperature for U0 = 0.1; and (d–f ) as (a–c) but for U0 = 3. For U0 = 0.1, fluid inertia plays
a minor role. Within t =0.1, Marangoni stresses have induced a flow with wavenumber k = 2,
and the initial interfacial deflection results in a slightly sharper velocity gradient near the first
peak of the initial temperature distribution x = x1. For U0 = 3, inertia plays a significant role.
Marangoni stresses weakly drain the film at the desired location, allowing for a control of the
rupture location. Advection of heat, however, counteracts this control mechanism.

Marangoni number M provides a measure of the initial heating. In addition, we
assume for simplicity that the initial interfacial condition is given by h(x, 0) = 1.
This variable is the most difficult to control in applications. Finally, we note that
the characteristic rupture time scale is significantly shorter than the time scale
corresponding to thermal losses.

We investigate the solutions to (2.19)–(2.21) numerically by use of a pseudo-spectral
expansion in space and a Runge–Kutta method in time (see Tilley et al. 2001 and
Savettaseranee et al. 2003). The time step is adaptive and depends on the number of
spatial modes whose amplitudes are greater than some prescribed tolerance, typically
between 10−10 and 10−12. Furthermore, the solution is spectrally interpolated when
N/2 − 5 modes have an amplitude larger than this prescribed criterion (where N is
the number of collocation points). The numerical solution is terminated when the
minimum interfacial height is below 1% of its initial value.

We begin by considering the possible control mechanisms. In figure 2(a–c), we
show the initial transient for the parameter values M = 1, U0 = 0.1, kθ =2 and ku =1.
The initial temperature distribution induces a flow through surface-tension gradients,
resulting in the largest velocity gradients near x1 = π/2 and x2 = 3π/2. The film drains
most rapidly near these regions. However, the initial velocity distribution leads to a
slightly sharper velocity gradient near x = x1 compared to that near x = x2, resulting
in a quicker rate of draining near x = x1. Since the sheet will be thinner near x = x1

compared to x = x2 during these times, this results in rupture occurring first near
x = x1. This example is illustrative of a situation where Marangoni effects play a
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Figure 3. (a) Evolution of the minimum interfacial height, hmin, when M = 1, for U0 = 0.4
(solid curve), U0 = 1 (dashed curve), and U0 = 3 (dash-dot curve). The corresponding final
distribution of the interfacial shape (solid curve) and the temperature profile (dashed curve)
are shown for (b) U0 = 1 and (c) U0 = 3. (d–f ) The analogous M = 2 case.

dominant role. The Marangoni stresses act to increase the local velocity gradients
and these gradients then drain the film at the desired location, providing control of
film rupture. When U0 = 3, the potential rupture location is determined by inertial
effects. As figures 2(d–f ) show, the sheet tends to rupture quickly by the interaction
of inertia and surface tension forces. Marangoni effects in this case are not strong
enough to modify the dynamics significantly, and the rupture location, xr ≈ 1.95, is
not local to either x1 or x2.

In figure 3(a) (where we have taken M = 1), we plot the minimum interfacial height
as a function of time for U0 = 0.4, 1, and 3. The final interfacial shape (solid curve) and
the temperature distribution (dashed curve) for U0 = 1 and 3 are shown as figures 3(b)
and 3(c) respectively. Figure 3(d–f ) shows the corresponding M = 2 case. Increasing
the Marangoni number M significantly reduces the time taken for rupture to occur.
Notice that the potential drop size can be controlled with a combination of the initial
temperature distribution and the strength of the initial axial velocity disturbance.

In figure 4(a) we show the final minimum interfacial location xmin as a function
of M for U0 = 1 and M = 0.1–1. Figure 4(b) shows the corresponding minimum
interfacial height. Note that there is a distinct pattern of rupture that occurs for the
smaller values of the Marangoni number compared to the larger values. For smaller
Marangoni numbers, the minimum interfacial height is localized near xmin ≈ 0.6 until
near the rupture time, where a second minimum near xmin ≈ 6 goes to rupture. For
larger values of the Marangoni number, the original minimum results in the rupture
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Figure 4. (a) Minimum interfacial height location, and (b) the minimum interfacial height
versus time for Marangoni numbers M = 0.1–1 with U0 = 1. Intermediate values of the
Marangoni number lead to a transition in the rupture location from near x =0.6 to near x = 6.
(c) Final interfacial distribution (solid curve) and temperature distribution (dashed curve) for
M =0.6. (d) As (c) but for M = 0.8.

location. Figures 4(c) and 4(d) show the final wave profiles for M =0.6 and 0.8,
respectively.

One measure of how sensitive the location of the rupture point is to variations in
the axial velocity field is to assume a phase difference between the initial conditions in
u and θ . In figures 5(a) (where M = 1) and 5(b) (where M =2), we show the results of
several simulations for u(x, 0) =U0 sin (x + φ) (with U0 = 1) and θ(x, 0) = sin (2x). In
figure 5(a), we notice that rupture can occur (or not occur) by even slight differences
in phase. In this case, initial inertial stresses dominate the Marangoni forces. However,
by a judicious choice of the phase shift, the two effects can work in collaboration
to minimize the rupture time. For larger values of M , the phase difference does not
affect the time of rupture as significantly, but it does offer a secondary mechanism to
control the rupture location (as can be seen in figure 5b).

4. Conclusions
We have considered quantitatively how a weak localized heating of a thin fluid

sheet could be used to control the location of, and time to, rupture. A lubrication
approximation takes account of changes in the sheet thickness, axial velocity, and
average temperature. Viscous effects are neglible in this particular case. The resulting
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Figure 5. The location of the minimum interfacial location xmin over time (for the case when
U0 = 1) for different phase shifts φ between the initial velocity field u(x, 0) and the initial
temperature field θ (x, 0). In each case, the simulation is terminated when the rupture criterion
of hmin = 0.01 is reached. (a) M = 1 and (b) M =2; note that the phase shift at this value of
M results in a relatively clean distinction of the rupture location xmin and comparable rupture
times.

system is nearly conservative due to the poor heat transport from the sheet to the
surrounding environment. From this study, we have found that when the Marangoni
stresses are comparable to inertial effects, then there is some control of the rupture
point and time. However, the lack of significant dissipative mechanisms makes
controlling some aspects of the rupture challenging. If more dissipation can be
introduced into the system (or equivalently if surface tension effects were comparable
to viscous effects), then the mechanism for control would be improved, but at a cost
on the rupture time scale.

Furthermore, a reduction of the rupture time is dependent upon the difference
in phase between the initial axial velocity and the initial temperature profile. To
extend this analysis to include larger Marangoni stresses requires an understanding
of pressure variations in the surrounding environment. We are currently investigating
this scenario in cylindrical geometries, where the instability is driven primarily by the
hoop-stress terms due to surface tension.

We would like to thank the Banff International Research Station where our
collaboration originated, and M.B. gratefully acknowledges the support of an EPSRC
Postdoctoral Fellowship.
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