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Framework Goals

Aid the prototyping Be readily integrated Visualize prototype

and testing of vehicle with common design and test

design and controls. control and feedback results via three-
mechanisms, dimensional

specifically ROS. animation.




Framework Language

The language used by the modeling tool is Modelica.
o This is a non-proprietary, domain-specific, object-oriented modeling
language
o In use by industry since 2000
Meant for modeling the dynamic behavior of technical systems via a
convenient, component-based approach
o Tools utilize graphical and textual editors for modeling
Models are described via discrete, algebraic, and/or differential equations;
o Modelica allows the user to abstract out the modeling process to just the
equations depicting the physical system’s nature
o No PDE or FEM representation, but can utilize results from third-party tools

Follows the FMI Standard
o Can import or export FMUs for co-simulation or model exchange
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URBL Propeller Template

Motivated from the designs of other underwater vehicles

. T oa
modeled in other papers, as well as that of the BlueROV2 Towe —
Power — EMF > Rotor > Finrust on water
Creates a template for propeller use: [Freaction v
> Has dynamics detailing thrust on body, and load torque from Mounting ;
Water thrust on ROV
o Has inertial mass component for interacting with ROV Pm;e”er :
o Can be implemented along any axis of motion frame
. Treaction
> Depends on EMF for actuation - source of voltage to the Propeller Model Fonrust on ROV
propeller is not provided
ROV Frame
v




Propeller Dynamics - Thrust

Thrust can be written as follows:
° Fiprust & (UZKT(I*)

> Where w is the rotor’s angular velocity, and K;(J*) = p; — B,J"
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Figure 4: Typical thrust and torque coefficients.

Source: M. Triantafyllou. 2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49). Fall
2004. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative
Commons BY-NC-SA


https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004

Propeller Dynamics - Load Torque

The load torque on the propeller due to moving water is found via power balance:
ﬁthrust -V
l&|n

(o] 2 f—
Tioad = —

° ﬁthrust is thrust
o v is the relative velocity between the ROV and the water

° @ is the rotor’s angular velocity
> 7 is the efficiency of the power balance

To better handle when w goes to zero, this equation is rewritten by expanding the thrust
ferm:

° Tioad = —kmV(kr@ — @ - V) bgir — kigss@

° k;,ss is added to represent loss purely due to the rotor’s motion.



Application
of the URBL

The framework is used to model
a commercially available ROV,
the BlueROV?2 from Blue
Robotics
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Madel Comparison | Testing the Simplified and Full Model on Data Set: 16,10
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Experimental Procedure

In [1], a control matrix was derived to determine the motor command

values from tele-op input.
o [tis difficult to determine if this control matrix matches that of the ROV
o Many approximations were made during its derivation

Instead, the testing relies on the motor control values
o These were pulled from the Pixhawk after each test
o 135 tests were done

o Only 59 of these tests contained usable data
o 34 of the remaining datasets contained nontrivial data
o The data was passed through a simple first-order filter to remove some measurement
noise

The motor command values were run through the simplified model

[1] Swaminathan, S., & Saripalli, S. (2018). Developing a Framework for Modeling Underwater Vehicles in Modelica. In Proceedings of the 2018 American Modelica Conference, October 9-10, 2018. Linkdping University Electronic Press, in press.
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Control Value Input

ROV Plant

Modelica Model

Bridge to ROS
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Modelica Discrete
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Conclusions

The URBL was stably constructed to provide basic ROV modeling
components, as well as ready-to-use integration with ROS

The URBL was successfully used to model an existing commercially
available ROV design, the BlueROV2, and was validated against

Library
Improvements

eViscous drag
representation

e Hydrodynamic
function replaceability

experimental data.

Future Work:

Model Validation
Improvements Improvements

e Better parameter e Utilize ocean data
analysis
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