Maple versus MATLAB syntax

Maple (by Maplesoft) and MATLAB (by MathWorks) are software that allow a user to formulate and solve many mathematical and scientific problems. While Maple and MATLAB can do many of the same tasks, broadly speaking, the strengths of Maple are symbolic computation and the strengths of MATLAB are numeric computation. Taken together, Maple and MATLAB are a powerful combination.

1 Plotting

Plotting of explicit and implict functions as well as parametric functions is shown to illustate the similarity of Maple and MATLAB.

- Plot a mathematical function of the form $y=f(x)$:

```
Maple:
|> f:=x->x^2:
|> g:=x->}\operatorname{sin}(\textrm{x})
|> plot([g(x),f(x)],x=0..5,color=[red,black],thickness=[1,3],linestyle=[solid,dash],labels=[X,Y]);
Result 1: Plots the expression g(x) as a thin, red, solid line on the same axes
as the expression f(x) which is a thick, black, dashed line over the x interval 0 to 5
MATLAB:
>> x=0:0.1:5;
>> plot(x,x.`2,'-k',x,sin(x),'--r')
>> xlabel('X')
>> ylabel('Y')
or
>> x=0:0.1:5;
>> plot(x,x.^2,'-k','LineWidth',3)
>> hold on
>> plot(x,sin(x),'--r','LineWidth',1)
>> xlabel('X')
>> ylabel('Y')
Result 2: same as Result 1
```

- Plot the function $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ side-by-side with its contour (implicit) plot $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{c}$.

```
Maple:
|> with(plots):
|> f:=(x,y) -> (^^2+y^2:
|> P:=array(1..2):
|> P[1]:=plot3d(f(x,y),x=-3..3,y=-3..3):
|> P[2]:=implicitplot([seq(f (x,y)=c,c=1..10)],x=-3..3,y=-3..3):
|> display(P);
or
|> with(plots):
|> f:=(x,y)->sin(x)+cos(y):
l> P:=array(1..2):
|> P[1]:=plot3d(f(x,y),x=-3..3,y=-3..3,axes=boxed,scaling=constrained):
|> P[2]:=contourplot (f(x,y),x=-3..3,y=-3..3, contours=10, scaling=constrained):
|> display(P);
Result 3: Plots z=f(x,y) over a square side--by--side with 10 of its contours
MATLAB:
>> [x,y]=meshgrid[-3:0.1:3,-3:0.1,3];
>> subplot(1,2,1)
>> z=sin(x)+cos(y)
```

```
>> surf(x,y,z)
>> axis square
>> subplot(1,2,2)
>> contour(x,y,z,10)
>> axis square
Result 4: same as Result 3
```

- Plot a 2 D or 3 D parametric curve $\mathrm{r}(\mathrm{t})=[\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})]$ or $\mathrm{r}(\mathrm{t})=[\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}), \mathrm{z}(\mathrm{t})]$.

```
Maple:
|> restart:
|> with(plots):
|> x:=t->cos(t):
|> y:=t->sin(t):
|> z1:=t->t:
|> z2:=t->1:
|> plot([x(t),y(t),t=0..2*Pi]);
|> spacecurve({[x(t),y(t),z1(t)],[x(t),y(t),z2(t)]},t=0..2*Pi,
color=red,linestyle=solid,thickness=3);
Result 5: Clear Maple's memory (restart:) and plot a circle,
a helix and a circle, in 2D and 3D, respectively.
MATLAB:
>> clear all
>> t=[0:0.1:6*pi];
>> x=cos(t);
>> y=sin(t);
>> z1=t;
>> z2=0.*t+1
>> plot(x,y)
>> plot3(x,y,z1,'-r','LineWidth',3)
>> hold on
>> plot3(x,y,z2)
```


2 Symbolics

Maple specializes in symbolic computations. Given Maple's design and its symbolic strengths, the course Calculus with Symbolic Computation (MTH1000) will utilize Maple for its symbolic computation needs.

```
Maple:
|> f:=x-> sin(x):
|> diff(f(x),x$2); #computes the second derivative of f(x), f''(x)
|> (D@@2)(f)(x); #also computes the second derivative of f(x), f''(x)
|> (D@@2)(f)(2); #computes the second derivative evaluated at x=2, f''(2)
|> int(f(x),x); #computes the antiderivative of f(x)
|> int(f(x),x=0..1); #computes the definite integral of f(x) from x=0 to x=1
```


3 Numerics

More on this topic later as needed.

