MTH2120 Linear Algebra Fall2010

1.1 Systems of Linear Equations

Practice: 3, 7, 12, 16, 18, 23, 24, 29

Required: 25, 28, 33

1.1.1 Linear equations

A linear equation:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

EXAMPLE 1:

$$4x_1 - 5x_2 + 2 = x_1$$
 and $x_2 = 2(\sqrt{6} - x_1) + x_3$
 \downarrow
rearranged
 \downarrow
 $3x_1 - 5x_2 = -2$
 $2x_1 + x_2 - x_3 = 2\sqrt{6}$

Not linear:

$$4x_1 - 6x_2 = x_1x_2$$
 and ______.

1.1.2 A system of linear equations (linear system):

A system of linear equations is a collection of one or more linear equations involving the same set of variables, say, $x_1, x_2, ..., x_n$.

A **solution** of a linear system is a list $(s_1, s_2, ..., s_n)$ of numbers that makes each equation in the system true when the values $s_1, s_2, ..., s_n$ are substituted for $x_1, x_2, ..., x_n$, respectively.

MTH2120 Linear Algebra Fall2010

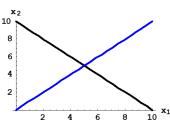
EXAMPLE 2: Two equations in two variables:

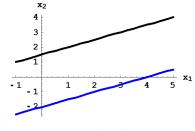
$$x_1 + x_2 = 10$$

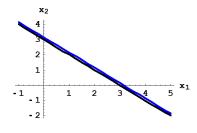
 $-x_1 + x_2 = 0$

$$x_1 - 2x_2 \equiv -3$$

 $2x_1 - 4x_2 = 8$







one unique solution

no solution

Theorem 1 A system of linear equations has either

- 1. exactly one solution (consistent) or
- 2. infinitely many solutions (consistent) or
- 3. no solution (inconsistent).

EXAMPLE 3 : Three equations in three variables. Each equation determines a plane in 3-space. In this case we have several options:

- 1. The planes intersect in one point.
- 2. Infinitely many solutions: the planes intersect in ______.
- 3. Infinitely many solutions: the planes intersect in ______.
- 4. The planes do not intersect.

The solution set:

• The set of all possible solutions of a linear system.

Equivalent systems:

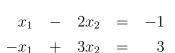
• Two linear systems with the same solution set.

1.1.3 Strategy for solving a linear system

• Replace one system with an equivalent system that is easier to solve.

EXAMPLE 4:

- 10



$$x_1 - 2x_2 = -1$$
$$x_2 = 2$$

$$x_1 = 3$$

$$x_2 = 2$$

- 2

1.1.4 Matrix Notation

$$\begin{array}{rcl}
 x_1 & - & 2x_2 & = & -1 \\
 & x_2 & = & 2
 \end{array}
 \begin{bmatrix}
 1 & -2 & -1 \\
 0 & 1 & 2
 \end{bmatrix}$$

$$\begin{array}{rcl}
 x_1 & = & 3 \\
 x_2 & = & 2
 \end{array}
 \begin{bmatrix}
 1 & 0 & 3 \\
 0 & 1 & 2
 \end{bmatrix}$$

1.1.5 Elementary Row Operations:

- 1. (Replacement) Add one row to a multiple of another row $(R_i = R_i + \alpha R_j)$.
- 2. (Interchange) Interchange two rows $(R_i \leftrightarrow R_j)$.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant $(R_i = \beta R_i, \beta \neq 0)$.

Row equivalent matrices: Two matrices where one matrix can be transformed into the other matrix by a sequence of elementary row operations.

Fact about Row Equivalence: If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

EXAMPLE 5:

Solution: (29, 16, 3)

Check: Is (29, 16, 3) a solution of the *original* system?

MTH2120 Linear Algebra Fall2010

$$(29) - 2(16) + 3 = 29 - 32 + 3 = 0$$

 $2(16) - 8(3) = 32 - 24 = 8$
 $-4(29) + 5(16) + 9(3) = -116 + 80 + 27 = -9$

1.1.6 Two Fundamental Questions (Existence and Uniqueness)

- 1) Is the system consistent; (i.e. does a solution **exist**?)
- 2) If a solution exists, is it **unique**? (i.e. is there one & only one solution?)

EXAMPLE 6: Is this system consistent?

In the last example, this system was reduced to the triangular form:

This is sufficient to see that the system is consistent and unique. Why?

EXAMPLE 7: Is this system consistent?

$$3x_2 - 6x_3 = 8$$

$$x_1 - 2x_2 + 3x_3 = -1$$

$$5x_1 - 7x_2 + 9x_3 = 0$$

$$\begin{bmatrix} 0 & 3 & -6 & 8 \\ 1 & -2 & 3 & -1 \\ 5 & -7 & 9 & 0 \end{bmatrix}$$

Solution: Row operations produce:

$$\begin{bmatrix} 0 & 3 & -6 & 8 \\ 1 & -2 & 3 & -1 \\ 5 & -7 & 9 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 0 & 3 & -6 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

Equation notation of triangular form:

$$x_1$$
 - $2x_2$ + $3x_3$ = -1
 $3x_2$ - $6x_3$ = 8
 $0x_3$ = -3 \leftarrow Never true
The original system is ____!

EXAMPLE 8: For what values of h will the following system be consistent?

$$3x_1 - 9x_2 = 4$$

 $-2x_1 + 6x_2 = h$

Solution: Reduce to triangular form.

$$\begin{bmatrix} 3 & -9 & 4 \\ -2 & 6 & h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & \frac{4}{3} \\ -2 & 6 & h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & \frac{4}{3} \\ 0 & 0 & h + \frac{8}{3} \end{bmatrix}$$

The second equation is ______. The system is consistent only if ______.