1.1 Systems of Linear Equations

Practice: $3,7,12,16,18,23,24,29$
Required: 25, 28, 33

1.1.1 Linear equations

A linear equation:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

EXAMPLE 1 :

Not linear:

$$
4 x_{1}-6 x_{2}=x_{1} x_{2}
$$

and \qquad .

1.1.2 A system of linear equations (linear system):

A system of linear equations is a collection of one or more linear equations involving the same set of variables, say, $x_{1}, x_{2}, \ldots, x_{n}$.

A solution of a linear system is a list $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of numbers that makes each equation in the system true when the values $s_{1}, s_{2}, \ldots, s_{n}$ are substituted for $x_{1}, x_{2}, \ldots, x_{n}$, respectively.

EXAMPLE 2: Two equations in two variables:

$$
\begin{array}{rlrl}
x_{1}+x_{2} & =10 & x_{1}-2 x_{2} & =-3 \\
-x_{1}+x_{2} & =0 & 2 x_{1}-4 x_{2} & =8
\end{array}
$$

one unique solution

no solution

\qquad

Theorem 1 A system of linear equations has either

1. exactly one solution (consistent) or
2. infinitely many solutions (consistent) or
3. no solution (inconsistent).

EXAMPLE 3 : Three equations in three variables. Each equation determines a plane in 3 -space. In this case we have several options:

1. The planes intersect in one point.
2. Infinitely many solutions: the planes intersect in \qquad .
3. Infinitely many solutions: the planes intersect in \qquad .
4. The planes do not intersect.

The solution set:

- The set of all possible solutions of a linear system.

Equivalent systems:

- Two linear systems with the same solution set.

1.1.3 Strategy for solving a linear system

- Replace one system with an equivalent system that is easier to solve.

EXAMPLE 4 :

$$
\begin{array}{rlrlrl}
x_{1}-2 x_{2} & =-1 & x_{1}-2 x_{2} & =-1 & x_{1} & \\
-x_{1}+3 x_{2} & =3 & & x_{2} & =2 & \\
x_{2} & =2
\end{array}
$$

1.1.4 Matrix Notation

$$
\begin{array}{rlrr}
x_{1}-2 x_{2} & = & -1 \\
-x_{1}+3 x_{2} & = & 3
\end{array} \underset{\text { (coefficient matrix) }}{\left[\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right]} \begin{gathered}
{\left[\begin{array}{ccc}
1 & -2 & -1 \\
-1 & 3 & 3
\end{array}\right]} \\
x_{1}-2 x_{2}
\end{gathered} \begin{aligned}
{\left[\begin{array}{ccc}
{\left[\begin{array}{cc}
1 \\
\text { (augmented matrix) }
\end{array}\right.} \\
x_{2} & = & 2
\end{array}\right.} & {\left[\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 2
\end{array}\right] }
\end{aligned}
$$

1.1.5 Elementary Row Operations:

1. (Replacement) Add one row to a multiple of another row $\left(R_{i}=R_{i}+\alpha R_{j}\right)$.
2. (Interchange) Interchange two rows $\left(R_{i} \leftrightarrow R_{j}\right)$.
3. (Scaling) Multiply all entries in a row by a nonzero constant $\left(R_{i}=\beta R_{i}, \quad \beta \neq 0\right)$.

Row equivalent matrices: Two matrices where one matrix can be transformed into the other matrix by a sequence of elementary row operations.

Fact about Row Equivalence: If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

EXAMPLE 5 :

i. $\begin{aligned} x_{1}-2 x_{2}+x_{3} & =0 \\ 2 x_{2}-8 x_{3} & =8 \\ -4 x_{1}+5 x_{2}+9 x_{3} & =-9\end{aligned} \quad\left[\begin{array}{rrrr}1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9\end{array}\right] \quad R_{3}=R_{3}+4 R_{1}$
ii $\begin{aligned} x_{1}-2 x_{2}+ & x_{3}\end{aligned}=0 \quad\left[\begin{array}{rrrr}1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9\end{array}\right] \quad R_{2}=-\quad$.

iii $\begin{aligned} x_{1}-2 x_{2}+x_{3} & =0 \\ x_{2}-4 x_{3} & =4 \\ x_{3} & =3\end{aligned} \quad\left[\begin{array}{rrrr}1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3\end{array}\right] \quad \begin{array}{ll}R_{1}= \\ R_{2}=\end{array}$
iv $\begin{array}{rlrr}x_{1}-2 x_{2} & & =-3 \\ x_{2} & & =16 \\ x_{3} & =3\end{array} \quad\left[\begin{array}{rrrr}1 & -2 & 0 & -3 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3\end{array}\right] \quad R_{1}=-$
iv $\begin{array}{rlll}x_{1} & & & =29 \\ & x_{2} & & 16 \\ & x_{3} & =3\end{array}\left[\begin{array}{rrrr}1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3\end{array}\right]$
Solution: $(29,16,3)$
Check: Is $(29,16,3)$ a solution of the original system?

$$
\begin{array}{rll}
x_{1}-2 x_{2} & +x_{3}=0 \\
2 x_{2} & -8 x_{3}=8 \\
-4 x_{1}+5 x_{2} & +9 x_{3}=-9
\end{array}
$$

1.1.6 Two Fundamental Questions (Existence and Uniqueness)

1) Is the system consistent; (i.e. does a solution exist?)
2) If a solution exists, is it unique? (i.e. is there one \& only one solution?)

EXAMPLE 6 : Is this system consistent?

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned}
$$

In the last example, this system was reduced to the triangular form:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
x_{3} & =3
\end{aligned}\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

This is sufficient to see that the system is consistent and unique. Why?

EXAMPLE 7 : Is this system consistent?

$$
\begin{gathered}
3 x_{2}-6 x_{3}=\quad 8 \\
x_{1}-2 x_{2}+3 x_{3}=-1 \\
5 x_{1}-7 x_{2}+9 x_{3}=\quad 0
\end{gathered}\left[\begin{array}{rrrr}
0 & 3 & -6 & 8 \\
1 & -2 & 3 & -1 \\
5 & -7 & 9 & 0
\end{array}\right]
$$

Solution: Row operations produce:

$$
\left[\begin{array}{rrrr}
0 & 3 & -6 & 8 \\
1 & -2 & 3 & -1 \\
5 & -7 & 9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 3 & -6 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

Equation notation of triangular form:

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =-1 \\
3 x_{2}-6 x_{3} & =8 \\
0 x_{3} & =-3 \quad \leftarrow \text { Never true }
\end{aligned}
$$

The original system is \qquad $!$

EXAMPLE 8 : For what values of h will the following system be consistent?

$$
\begin{array}{r}
3 x_{1}-9 x_{2}=4 \\
-2 x_{1}+6 x_{2}=h
\end{array}
$$

Solution: Reduce to triangular form.

$$
\left[\begin{array}{rrr}
3 & -9 & 4 \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -3 & \frac{4}{3} \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -3 & \frac{4}{3} \\
0 & 0 & h+\frac{8}{3}
\end{array}\right]
$$

The second equation is \qquad . The system is consistent only if \qquad .

