5.1 Eigenvectors & Eigenvalues

4,9, 13,19,22,25, 33

The basic concepts presented here - *eigenvectors* and *eigenvalues* - are useful throughout pure and applied mathematics. Eigenvalues are also used to study difference equations and *continuous* dynamical systems. They provide critical information in engineering design, and they arise naturally in such fields as physics and chemistry.

EXAMPLE 1 : Let $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Examine the images of \mathbf{u} and \mathbf{v} under multiplication by A.

Solution

$$A\mathbf{u} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -2\mathbf{u}$$
$$A\mathbf{v} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \neq \lambda \mathbf{v} \text{ for any scalar } \lambda.$$

 \mathbf{u} is called an *eigenvector* of A.

 \mathbf{v} is not an eigenvector of A since $A\mathbf{v}$ is not a multiple of \mathbf{v} .

 $A\mathbf{u} = -2\mathbf{u}$, but $A\mathbf{v} \neq \lambda \mathbf{v}$

Definition 1 An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ .

EXAMPLE 2: Show that 4 is an eigenvalue of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$ and find the corresponding eigenvectors.

Solution: Scalar 4 is an eigenvalue of A if and only if $A\mathbf{x} = 4\mathbf{x}$ has a nontrivial solution.

$$A\mathbf{x}-4\mathbf{x} = \mathbf{0}$$
$$A\mathbf{x}-4(\dots)\mathbf{x} = \mathbf{0}$$
$$(A-4I)\mathbf{x} = \mathbf{0}.$$

To solve $(A-4I)\mathbf{x} = \mathbf{0}$, we need to find A-4I first:

$$A-4I = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ -4 & -2 \end{bmatrix}$$

Now solve $(A-4I)\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} -4 & -2 & 0 \\ -4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \mathbf{x} = \begin{bmatrix} \\ \\ \end{bmatrix} = x_2 \begin{bmatrix} \\ \\ \end{bmatrix}.$$

Each vector of the form $x_2 \begin{bmatrix} \frac{-1}{2} \\ 1 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $\lambda = 4$.

Eigenspace for $\lambda = 4$

Definition 2 The set of all solutions to $(A-\lambda I)\mathbf{x} = \mathbf{0}$ is called the **eigenspace** of A corresponding to λ .

EXAMPLE 3 : Let $A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$. An eigenvalue of A is $\lambda = 2$. Find a basis for

the corresponding eigenspace.

Solution:

$$A-2I = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} - \begin{bmatrix} --- & 0 & 0 \\ 0 & -- & 0 \\ 0 & 0 & --- \end{bmatrix}$$
$$= \begin{bmatrix} 2--- & 0 & 0 \\ -1 & 3--- & 1 \\ -1 & 1 & 3--- \end{bmatrix} = \begin{bmatrix} --- & 0 & 0 \\ -1 & -- & 1 \\ -1 & 1 & --- \end{bmatrix}$$

Augmented matrix for $(A-2I)\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \dots \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

So a basis for the eigenspace corresponding to $\lambda = 2$ is

$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

3

Effects of Multiplying Vectors in Eigenspaces for $\lambda = 2$ by A

EXAMPLE 4: Suppose λ is eigenvalue of A. Determine an eigenvalue of A^2 and A^3 . In general, what is an eigenvalue of A^n ?

Solution: Since λ is eigenvalue of A, there is a nonzero vector **x** such that

$$A\mathbf{x} = \lambda \mathbf{x}.$$

Then

$$A^{2}\mathbf{x} = \dots \lambda \mathbf{x}$$
$$A^{2}\mathbf{x} = \lambda A \mathbf{x}$$
$$A^{2}\mathbf{x} = \lambda_{\dots} \mathbf{x}$$
$$A^{2}\mathbf{x} = \lambda^{2}\mathbf{x}$$

Therefore λ^2 is an eigenvalue of A^2 .

Show that λ^3 is an eigenvalue of A^3 :

$$--A^{2}\mathbf{x} = --\lambda^{2}\mathbf{x}$$
$$A^{3}\mathbf{x} = \lambda^{2}A\mathbf{x}$$
$$A^{3}\mathbf{x} = \lambda^{3}\mathbf{x}$$

Therefore λ^3 is an eigenvalue of A^3 .

In general, _____ is an eigenvalue of A^n .

Theorem 1 The eigenvalues of a triangular matrix are the entries on its main diagonal.

Proof

Proof for the 3×3 Upper Triangular Case: Let

$$A = \left[\begin{array}{rrrr} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{array} \right].$$

and then

$$A - \lambda I = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}.$$

By definition, λ is an eigenvalue of A if and only if $(A - \lambda I) \mathbf{x} = \mathbf{0}$ has a nontrivial solution. This occurs if and only if $(A - \lambda I) \mathbf{x} = \mathbf{0}$ has a free variable. When does this occur?

-			
_		-	

Theorem 2 If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is a linearly independent set.

EXAMPLE 5 : Let $A == \begin{bmatrix} -1 & 2 & 3 \\ 0 & -4 & 5 \\ 0 & 0 & -6 \end{bmatrix}$. How many linearly independent eigenvectors does A have? Solution: The eigenvalues of A are _____.

Therefore, A has ______linearly independent eigenvectors.