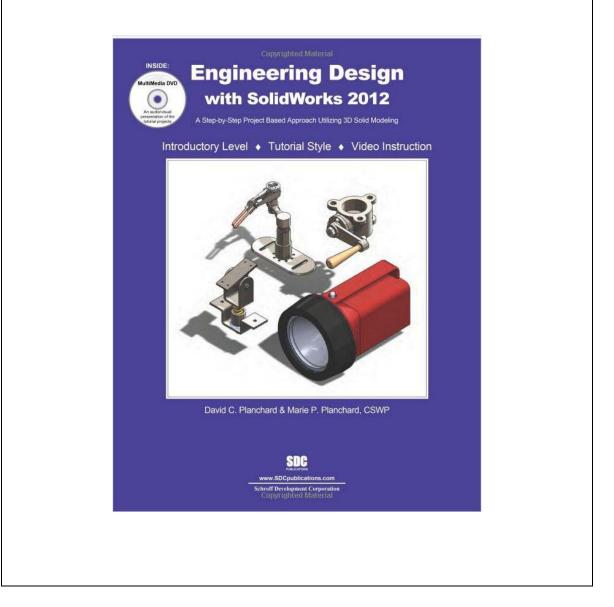
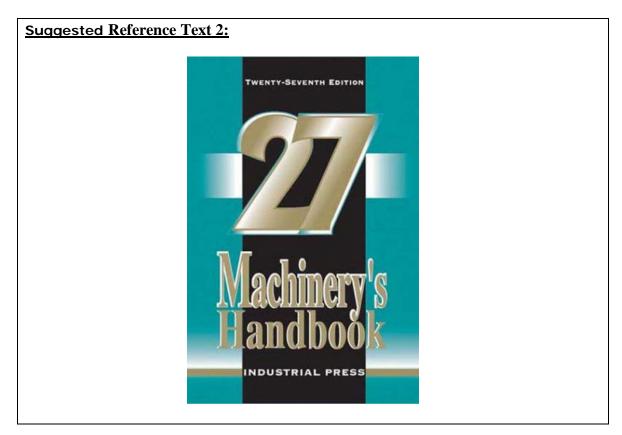
ENGR 2330

Introduction to Mechanical Prototyping Course Syllabus


2013 Spring Semester Franklin W. Olin College of Engineering


1/15/2013

ENGR 2330 Mechanical Design (Monday and Thursday 9-11 in AC309) Instructor: Barrett (<u>david.barrett@olin.edu</u>) Credits: 4. Course Folder: P:\+Courses\ENGR2330 Prerequisites: a desire to build complex machines well Satisfies subject requirements: ME Mechanical Design Core

Through project experiences, students will learn the techniques needed to both master the technical communication of mechanical designs and the fabrication skills needed to rapidly build them. Students will practice professional drafting techniques to describe a full range of fabricated components, including milled, lathed, sheet metal, water jet, injection molded, 3d printed and composite components. This course will include a significant machine shop component, where each student will gain exposure to advanced fabrication techniques. The final project will be the design and fabrication of a fully operational, complex mechanical system.

Suggested Reference Text 1:

Recommended Hardware (Amazon.com):

Avenger MC0006 6" Digital Caliper with Large Display

List Price: \$44.00 Price: \$39.99

General Tools 616 Flexible Industrial Straight Edge Ruler

Price: \$4.99

DewalDPG54-1C Protector Clear High Performance Lightweight Protective Safety Glasses

Price: \$6.36

A brief overview of the semester:

The purpose of this course is to teach you the fundamentals of Mechanical Prototyping. It is intended to familiarize you with the basic mechanical components that make up most mechanical systems and to train you to both design them and combine them into simple useful machines. The course will consist of developing professional skills in Solidworks and the physical fabrication of illustrative examples of prototypes in the Olin shop and Large Project Building Composites Lab. The course will include multiple team design projects and will conclude with a final independent design project of significant complexity. A working knowledge of simple machine shop fabrication techniques and the ability to generate Part, Assembly and Detailed drawings in SolidWorks is highly recommended.

Course Objectives:

At the end of this course, students will be able to generate a professional grade mechanical documentation package, choose appropriate manufacturing techniques and be able to efficiently build rapid prototypes of simple mechanical systems.

Measurable Outcomes:

At the end of this course, students will be proficient in the creation of professional part, drawing and assembly documents in SolidworksTM and will be able to rapidly build simple mechanical prototypes using a wide range of fabrication techniques.

Deliverables:

Mechanical Design Packages: Professional grade mechanical documentation package will consist of a written report including a SolidWorks drawing package of all of a designs components and a digital picture of the fabricated component (if one is generated). Please use the following format for all design packages:

1) Title Page

- 2) Table of Contents and list of Figures
- 3) Executive summary

4) Detailed description of "Structure" used in design. What structures, what joints, what fasteners and why?

5) Detailed description of "Power" used in design. Where does power come from? How does it work?

6) Detailed description of "Transmission" used in design. What types of transmissions are used? Where are they used? And why are they used?

7) Full professional SolidWorks assembly drawing package for design.

8) Full professional SolidWorks detailed drawing package for design.

9) Full Bill of Materials of all hardware used.

Successful Robot Demos: Each Design package will be paired with an in-class demonstration of your team's fully assembled, tested, working robot.

Class Involvement: Includes attendance and participation in both project team based design activities, in class design reviews and in advanced fabrication technique seminars in the Olin Shop.

In-Class Design Studies: Each design lecture will be followed by a short, in class design study that will allow student hands-on experience with new design concept..

Please turn in one paper copies of all work for grading purposes and place one archival .pdf copy for ABET accreditation records in the course folder.

Grading:

Although a much of the work done in this course will be done in a team format, students will generate and be graded on unique individual reports. Final course grades will be determined by the following work breakdown.

Team Mechanical Design Packages: 35% Successful Robot Demos: 30% Instructor Appraisal of Class Involvement: 15% Individual In-Class Design Studies: 20%

All work graded on a scale of 100 points. In that the ability to deliver before fixed deadlines is critical to a successful engineering enterprise, work submitted late (without prior approval) will be penalized on the following scale: Late 1 day -10 points, Late 2 days -20, Late 3 days –submission refused, Grade=0. Please note that any un-submitted report will generate a zero grade and will significantly affect your final course grade.

Grading Metric: >95 = (A); >90 = (A-); >85 = (B+); >80 = (B); >75 = (B-); >70 = (C+); >65 = (C); >60 = (C-); >55 = Please Don't!

Time Expectations:

ENGR2330 is a 4 credit course. Please plan on spending an average of 12 hours a week on this material, ~4 of which will be in class. A significant portion of the remaining 8 hours will involve designing components in SolidWorks or fabricating components in the machine shop. Course assignments will involve significant out of class team work. The Olin Mini-Shop and Project building composites fabrication bay are configured to support this work.

Honor Code Issues:

Collaboration on all deliverables is expected and encouraged; many assignments will be done in design teams of 4 to 5 students. However it is expected each individual on a team will both do their fair share of the team work and will turn in his or her own unique reports and design packages. In practice, if a team of 5 produces 20 drawings, I will expect to see ~4 "individually signed" drawings from each team member.

Spring 2013 Schedule*:

Date	Class Description	Deliverable (student work due this day)
1/24 Th	Course Orientation and	Take clean legible notes on lectures. (Place all
	Fundamentals of Rapid	notes and parts generated in your personal course
	Mechanical Prototyping.	digital design folder at:
		\\FSv01\Courses\ENGR2330\firstname_lastname
		Sign up for Mill and Lath Training in Main Shop
1/28 M	Lecture Structure;	Complete SolidWorks Embedded Tutorials.
	Design of the 7 most	Open SolidWorks, Got to >Help>SolidWorks
	common mechanical	Tutorials, Do:
	structures. Design of	1. Intro to SolidWorks
	joints with fasteners,	2. Lesson 1: Parts
	adhesive and welds.	3. Lesson2: Assemblies
	Class Project: "Your	4. Lesson3: Drawings
	name Structure Design	Place all of your tutorial parts in your digital
	Study"	design folder.
1/31 Th	Lecture Transmission;	Complete SolidWorks Embedded Tutorials
	Overview of	Open SolidWorks, Got to >Help>SolidWorks
	transmissions.	Tutorials, Do:
		1. 3D Sketching
	Class Project: "Your	2. Fillets
	name Structure Design	3. Lofts
	Study"	4. Revolves and Sweeps
		5. Assembly Mates
		6. Advanced Drawings
		Place all of your tutorial parts in your digital
0// 2.5		design folder.
2/4 M	Lecture Transmission;	"Your Name Structure" Design Study Due.
	Design of 4 bar linkages.	Complete SolidWorks Embedded Tutorials
		Open SolidWorks, Got to >Help>SolidWorks
	Class Project: 4 bar	Tutorials, Do:
	linkage Design Study	1. Toolbox
		2. SolidWorks Motion
		3. PhotoView 360 and Appearances
		Place all of your tutorial parts in your digital
<u> </u>	I aatuma Tuanamianian	design folder.
2/7 Th	Lecture Transmission;	See and do "Cam Design Help Tutorial Using SolidWorks:"
	Design of Cams.	
	Class Project: Com	http://www.youtube.com/watch?v=yhZ3N_cJLM
	Class Project: Cam	<u>0&feature=relmfu</u>
	Design Study	Saa "Com Mating and Analysis Halp Using
		See "Cam Mating and Analysis Help Using SolidWorks:"
		http://www.youtube.com/watch?v=Wn7CW9y42
		Pg

		See on-line cam help: http://help.solidworks.com/2012/English/SolidWo rks/sldworks/Cam_Follower_Mates.htm?id=9095 5495603d4c3fac01d15f6cdb1a05#Pg0
2/11 M	Lecture Transmission; Design of gear transmissions. Class Project: Gearbox Design Study	See "Solidworks Tutorial: Mechanical Mates: http://www.youtube.com/watch?v=Oupme_s5uZg See following for design help with gears: http://help.solidworks.com/2012/English/SolidWo rks/sldworks/Gear_Mates.htm http://help.solidworks.com/2012/English/SolidWo rks/sldworks/Rack_and_Pinion_Mates.htm?id=15 0393bebc7f4101bb0bc3797a43796f#Pg0
2/14 Th	<i>Lecture Transmission;</i> Design of belt and chain transmissions. <i>Class Project:</i> Belt Design Study	See "Belts and Chains in SolidWorks:" http://www.youtube.com/watch?v=Xmyryo9kVlc &feature=related See link for designing belts in Blocks: Using Traction and Belts for Layout Sketches http://help.solidworks.com/2012/English/solidwor ks/sldworks/using_traction_and_belts_for_layout _sketches.htm
2/19 M	<i>Lecture Power;</i> Motors, Actuators, Springs, Flywheels, Brakes, Shocks, Dampers. <i>Class Project:</i> Power Design Study	Transmission Design Package DueSee SolidWorks Motion Simulation:http://www.youtube.com/watch?v=rMeyaO1Kqe0See SolidWorks Engine Animation:http://www.youtube.com/watch?v=ilMxChYGq0QSee 3HP Motor Animation:http://www.youtube.com/watch?v=5a4KasNwLkQSee spring animation at:http://www.youtube.com/watch?v=OYIJT7rhq_g&feature=fvwrelSee:http://help.solidworks.com/2012/English/SolidWorks/motionstudies/c_Introduction_to_Motion_Studies.htm?id=d951ad4645444174be782c4314d50ea4#Pg0

2/21 Th	<i>Lecture: Traditional</i> <i>Fabrication</i> Saw+Sand+Drill+Tap	Hands on fabrication training using saws, sanders, drill presses and threading tools in shop.
	Review. Team Project: Traditional Machine Shop Built Robot	Start team design of robot.
2/25 M	Team Project: Traditional	Top Level design finalized, team work on
2/2J IVI	Machine Shop Built	individual components
	Robot	individual components
2/28 Th	No Class	No scheduled activities
3/4 M	Team Project: Traditional Machine Shop Built Robot	In Class Design Review 1
3/7/Th	Team Project: Traditional Machine Shop Built Robot	Team work on detailed design and fabrication
3/11 M	Team Project: Traditional Machine Shop Built Robot	Team work on assembly.
3/14 Th	Team Project: Traditional	In Class Project Demo
	Machine Shop Built	Design Package 1: TMSBR Due
	Robot	
3/18 M	Spring Break	No course work
3/21 Th	Spring Break	No course work
3/25M	Lecture: Sheet Metal Fabrication Team Project: Sheet Metal Built Robot	Do embedded sheet metal tutorials within SolidWorks, See: Sheet Metal in SolidWorks <u>http://www.youtube.com/watch?v=am- EKmxZTws</u> See: Sheet Metal Box <u>http://www.youtube.com/watch?v=m38VqL0t9sk</u> See: Solidworks Tutorial (Sheet Metal and Forming Tools I)
3/28 Th	Team Project: Sheet Metal Built Robot	http://www.youtube.com/watch?v=24qTQR7oLt Q Start team design or robot. Top Level design finalized, team work on individual components
4/1 M	Team Project: Sheet Metal Built Robot	In Class Design Review 2

4/4 Th	Team Project: Sheet Metal Built Robot	Team work on detailed design and fabrication
4/8 M	Team Project: Sheet Metal Built Robot	Team work on assembly.
4/11 Th	Team Project: Sheet Metal	In Class Project Demo
	Built Robot	Design Package 2: SMBR Due
4/17 W	Lecture: Composite	Do mold and surface tutorials within SolidWorks.
	Fabrication	
		See: Intro to Surface Modeling
	Team Project: RP-	http://www.youtube.com/watch?v=fA2-i34UVUo
	Composite Built Robot	See: SolidWorks Complex shapes
		http://www.youtube.com/watch?v=3MoowmIKw
		YQ
		See: SolidWorks Surfacing to Create FSAE Body
		Work - Part 1
		http://www.youtube.com/watch?v=-
		<u>8dKweEt1OQ</u>
		See: SolidWorks Surfacing to Create FSAE Body Work - Part 2
		http://www.youtube.com/watch?v=-MFFjb6ul4A
4/18 Th	Team Project: RP-	Top Level design finalized, team work on
	Composite Built Robot	individual components
	1	1
4/22 M	Team Project: RP-	In Class Design Review 3
	Composite Built Robot	
4/25	Team Project: RP-	Team work on detailed design and fabrication
Th	Composite Built Robot	C C
4/29 M	Team Project: RP-	Team work on assembly.
	Composite Built Robot	ř
5/2 Th	Team Project: RP-	In Class Project Demo
	Composite Built Robot	Design Package 3: RP-Composite Robot Due

*Schedule subject to review and revision at any time.

Deliverables denoted in RED will turned in to instructor for course grade. 1 paper copies and 1 .pdf copy in course folder please.