Fall 2010
Assignment 1
Due Friday 9/10 at 5pm

You may work together on assignments but you must write up your own work.

1) Consider the free vibration of the single degree-of-freedom, mass-spring-damper system where $\mathrm{x}(\mathrm{t})$ describes the displacement of mass, m . The constants c and k are the linear damping and linear spring stiffness coefficients, respectively.

$$
m \ddot{x}(t)+c \dot{x}(t)+k x(t)=0 \text { with initial conditions } x(0)=x_{0} \text { and } \dot{x}(0)=v_{0}
$$

First consider the undamped case, $c=0$.
a) Write out the analytical solution for $\mathrm{x}(\mathrm{t})$
b) What is the natural frequency?
c) Using $\mathrm{m}=1, \mathrm{k}=4, \mathrm{x}_{0}=1$, and $\mathrm{v}_{0}=0$, plot the free response, $\mathrm{x}(\mathrm{t})$ using MATLAB
d) Describe how the plot in c) would change if k is increased and decreased. How about if m is increased and decreased?

Now consider the damped case, $c \neq 0$
e) Write out the analytical solution for $\mathrm{x}(\mathrm{t})$.
f) Using $m=1, c=0.1, k=4, x_{0}=1$, and $v_{0}=0$, plot the free response, $x(t)$.
g) Describe how the plot in part f) would change if c is increased and decreased.
2) Using the MATLAB function, ODE45, directly integrate the single d-o-f , harmonic oscillator differential equation for all of the cases in question 3. Make both displacement and velocity time-series plots. Compare these to those generated from the analytical solutions. Discuss differences.
3) Using SIMULINK, create a model of the single d-o-f harmonic oscillator. Through the oscilloscope icon, make plots of the displacement and velocity response. Verify that these results are the same as those generated by direct numerical integration. (Obviously, they should be the same as MATLAB is doing the same calculations). Hand in copy of the system diagram.
4) Consider the forced vibration of the single d-o-f mass-spring-damper system.

$$
m \ddot{x}(t)+c \dot{x}(t)+k x(t)=f(t) \text { with } x(0)=x_{0} \text { and } \dot{x}(0)=v_{0}
$$

For the applied (to the mass) excitation, $f(t)=A \sin \left(\omega_{f} t\right)$,
a) Write out the analytical solution for $x(t)$.
b) Using $\mathrm{m}=1, \mathrm{c}=0, \mathrm{k}=4, \mathrm{f}(\mathrm{t})=\sin 3 \mathrm{t}, \mathrm{x}_{0}=1$, and $\mathrm{v}_{0}=0$, plot the total response, $\mathrm{x}(\mathrm{t})$.
c) Using $m=1, c=0, k=4, f(t)=\sin 2 t, x_{0}=1$, and $v_{0}=0$, plot the total response, $x(t)$.

Important note: what happens in this case to the solution found in part a? What can be done to find an analytical solution?
d) Using $\mathrm{m}=1, \mathrm{c}=0.1, \mathrm{k}=4, \mathrm{f}(\mathrm{t})=\sin 2 \mathrm{t}, \mathrm{x}_{0}=1$, and $\mathrm{v}_{0}=0$, plot the total response, $\mathrm{x}(\mathrm{t})$.

