Flying Between Obstacles with an Autonomous Knife-Edge Maneuver
Description
We develop an aircraft and control system that is capable of repeatedly performing a high speed (7m/s or 16 MPH) "knife-edge" maneuver through a gap that is smaller than the aircraft's wingspan. The maneuver consists of flying towards a gap, rolling to a significant angle, accurately navigating between the obstacles, and rolling back to horizontal. The speed and roll-rate required demand a control system capable of highly precise, repeatable maneuvers. We address the necessary control theory, path planning, and hardware requirements for such a maneuver, and give a proposal for a new system that may improve upon the existing techniques.