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Electrokinetic flow is leveraged in a variety of applications, and is a key enabler of on-chip
electrophoresis systems. An important sub-class of electrokinetic devices aim to pump and control
electrolyte working liquids with spatial gradients in conductivity. These high-gradient flows can
become unstable under the application of a sufficiently strong electric field. In this work the
instability physics is explored using theoretical and numerical analyses, as well as experimental
observations. The flow in a long, rectangular-cross-section channel is considered. A conductivity
gradient is assumed to be orthogonal to the main flow direction, and an electric field is applied in
the streamwise direction. It is found that such a system exhibits a critical electric field above which
the flow is highly unstable, resulting in fluctuating velocities and rapid stirring. Modeling results
compare well with experimental observations. The model indicates that the fluid forces associated
with the thin dimension of the channel~transverse to both the conductivity gradient and the main
flow direction! tends to stabilize the flow. These results have application to the design and control
of on-chip assays that require high conductivity gradients, and provides a rapid mixing mechanism
for low Reynolds number flows in microchannels. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1710898#

I. INTRODUCTION

Over the past decade there has been extensive research
into the design of microfluidic systems for chemical analysis.
These devices offer the promise of integrating multiple labo-
ratory processes onto a single chip, thereby increasing
throughput and decreasing assay cost.1 Extensive reviews of
manufacturing techniques, applications, and engineering
challenges of micro total analysis systems~mTAS! have been
presented.2–5

The mass and ion transport regimes ofmTAS are often
distinct from macro-scale flow devices. One important re-
gime is electrokinetics~EK!, which describes the coupling of
ion transport, fluid flow, and electric fields.6,7 A solid surface
in contact with an electrolyte typically acquires a surface
charge and forms an electric double layer~EDL!, composed
of the wall charge and a counter-ion shielding layer with a
thickness characterized by the Debye length. Electroosmosis
is the bulk motion of liquid that results upon the application
of an external field with a component parallel to the surface.
Electrokinetics includes also electrophoresis, which is the
drift motion of charged species.

Typical microchannel flows have characteristic scales of
10 microns or greater, and Debye lengths of 10 nm or less, so
that the EDL is confined to a thin layer near the wall. For
‘‘thin’’ EDLs, electrolyte motion outside of the double layer
can be modeled as flow with a slip velocity condition.8 This

slip approximation is unlike the stress-free condition of po-
tential flow theory9 in that it supports both a slip velocity
proportional to local electric field and a viscous stress. As we
shall discuss here, net charge can also be generated in the
bulk flow due to the interaction of electric fields and conduc-
tivity gradients; this leads to body forces that can destabilize
electrokinetic flow.10,11

Electrokinetics is a subfield of electrohydrodynamics
~EHD!, which can be defined as the interaction between elec-
tric fields and fluid motion. Generalized transport equations
for EHD flows are presented in a review by Saville.12 EK
effects are distinguished by the importance of charge separa-
tion at solid–liquid interfaces.7,13,14 These interfacial forces
can dominate solute transport inmTAS. General EHD theory
also includes forces that act away from solid–liquid inter-
faces in regions where the liquid has conductivity and per-
mittivity gradients.15 Classical EHD studies typically deal
with near-dielectric liquids with conductivities of order
10211– 1029 S/m and can be described by the leaky-
dielectric model developed by Taylor and Melcher.12 In this
model, liquids are described as having both polarizability
and free charge, and the internal electric field generated by
accumulated charges can be on the order of the externally
imposed field. The leaky-dielectric model is reviewed in de-
tail by Saville12 and Melcher and Taylor.15,16 The model of-
ten uses a formulation for conservation of net charge and
conductivity as scalar quantities.15 This Ohmic model has
been used to describe instabilities in EHD flows where inter-
facial EK effects are not considered.17 This work includesa!Electronic mail: hao.lin@stanford.edu
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EHD stability studies with axial~i.e., parallel to an electric
field!,11,18 and transverse conductivity gradients.10

We shall apply concepts from generalized EHD theory to
describe EK flow instabilities in microchannels. Particularly
relevant to our work is that of Hoburg and Melcher,10 who
studied a similar flow configuration and electric field con-
figuration. They performed a stability analysis for an electric
field parallel to a liquid–liquid interface~perpendicular to
the conductivity gradient! and flow initially at rest. Their
analysis, which neglects molecular diffusion, showed the in-
terface is stable for all electric fields when the liquid–liquid
interface is assumed to be infinitely sharp.19 More impor-
tantly, they showed this configuration is unstable for all ap-
plied electric fields when the interface is modeled with a
finite-width, exponentially dependent concentration profile
between the two liquids~with no subsequent diffusion!. The
latter case exhibited an instability that resulted in buckling
and distortion of the interface. Hoburg and Melcher de-
scribed the instability mechanism as initiated by charge ac-
cumulation at a perturbed interface, and made qualitative
comparisons to experiments with an oil–oil interface con-
tained between two 19 by 70 mm glass plates separated by 4
mm in the direction perpendicular to both the applied field
and the conductivity gradient, and a characteristic field of
;104 V/cm.10 Another important insight is offered by the
work of Baygents and Baldessari11 who found that including
the diffusion of conductivity is crucial to the existence of a
critical electrical field above which the flow is unstable. Al-
though their conclusion was reached for a different electric
field/conductivity gradient configuration, we will show the
idea also holds for our case.~A study of a flow field similar
to that considered by Baygents and Baldessari was also per-
formed by Benet al.,20 using a similarity analysis approach;
however, these authors concluded that flow instabilities were
insignificant for their parameter range of interest.!

Here we are interested in EK flows with conductivity
gradients, which are critical to a variety of on-chip assays
including field amplified sample stacking,21 isoelectric
focusing,22 and electrophoretic assays where conductivities
of various sample and buffer streams are either unknown or
poorly controlled. This flow also has direct applications to
rapid mixing of sample streams and to preserving the stabil-
ity of co-flowing streams as in lamination processes.23 A fun-
damental understanding of electrokinetic instabilities can
provide a design framework whereby instabilities are
avoided, as they are often detrimental to system perfor-
mance. Two of us~C.H.C. and J.G.S.! reported observations
of EK instabilities in flows with significant conductivity gra-
dients within microfluidic T- and X-junctions.24 Three of us
~C.H.C., H.L., J.G.S. together with S. K. Lele! presented a
formulation of these instability dynamics and summarized
the results of a linear analysis that models the mechanism
behind the growth and propagation of the unstable waves in
EK T-junctions.25 These instabilities can also be applied as a
means for rapid mixing of low Reynolds number flows,
where mixing is often limited by molecular diffusion.26 For
example, two of us~M.H.O. and J.G.S.! have leveraged elec-
trokinetic instabilities in a rapid micromixer design.27

In this paper we present experimental, analytical, and
computational results in order to quantify an electrokinetic
flow instability observed in long, thin electrokinetic micro-
channels with conductivity gradients orthogonal to the chan-
nel axis. We will re-exam the assumptions of Hoburg and
Melcher for micro-fluidic applications, and follow a general
formulation and framework given by Melcher.15 In particu-
lar, we include advective effects due to electroosmotic flow,
an initial conductivity profile consistent with our experi-
ments, and a diffusive component of the conductivity conser-
vation equation critical in modeling EK instabilities. The
electroosmotic flow results in a shear flow imposed on the
liquid. The detailed physics of the EDL are treated as
coupled to the rest of the flow through a slip boundary con-
dition which depends on local electrolyte conductivity. We
present a two-dimensional linear stability analysis and con-
duct nonlinear flow simulations. We also extend the linear
analysis to include three-dimensional effects.

The paper is organized as follows. In Sec. II we outline
our flow field and present experimental results; in Sec. III we
formulate the governing equations; in Sec. IV we present a
two-dimensional model, conduct a linear stability analysis,
present stability diagrams in the phase space of wave number
and the applied electrical field, and present full numerical
simulations; in Sec. V we perform analysis of the three-
dimensional flow and perform linearized numerical simula-
tions to find stability boundaries. We discuss the differences
between the flow dynamics in the two- and three-
dimensional cases, demonstrate the mechanisms for the in-
stability and compare theory to experiments in Sec. VI.

II. EXPERIMENTAL OBSERVATIONS

A. Setup

Figure 1 shows a schematic of the microchannel setup
used in the experiments. The microchannel consisted of a
borosilicate glass capillary~Wilmad-Labglass, NJ! with a
rectangular cross section; the inner dimensions were 1 mm
3100mm, and the length was 40 mm. The capillary ends
were sealed using a silicone adhesive to custom-machined
acrylic manifolds housing inlet and outlet ports. A syringe
pump forced dyed and undyed buffer solutions from the inlet
ports through the capillary toward the outlet port. The buff-
ered solutions completed the electric circuit between plati-
num electrodes located at the inlet and outlet of the capillary.
The aqueous buffered solutions consisted of a 10 mM
HEPES buffer~Sigma-Aldrich Corp, MO!. To visualize fluid
motion, an electrically neutral, high-molecular-weight dye
~70kDalton! composed of a dextran-rhodamine B conjugate
~Molecular Probes, OR! was added to one of the buffer
streams at a concentration of 2mM. This dye was used to
minimize both electrophoretic drift and molecular diffusion
of dye molecules during experiments of order 10 s duration.
The dynamics of the scalar fields shown here are, therefore,
associated with the development of the background bulk liq-
uid. Potassium chloride was added to the dyed buffer solu-
tion to control/increase its electrical conductivity. The dyed
solution conductivity,shigh, was measured as 50mS/cm us-
ing a CON 500 Oakton Instruments conductivity meter~Ver-
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non, IL!, while that of the undyed buffer solution,s low , was
5 mS/cm, yielding a conductivity ratio ofg510. The dilute
electrolytes can be assumed to have the permittivity and vis-
cosity of pure water.28,29 Other properties of the working
electrolytes are discussed in Sec. III, and summarized in
Table I.

The two syringes on the syringe pump were loaded with
high and low conductivity liquid. These two outputs were
connected to the upstream manifold which combined the
pressure-driven streams of the syringes into the glass micro-
channel, forming an interface within the channel. The two
buffer streams initially occupied the upper and lower halves
of the microchannel resulting in a diffuse conductivity gra-
dient along the spanwise,y-direction. Following buffer

stream injection, the syringe pump was deactivated and the
electric potential of the inlet port electrode was raised while
keeping the outlet port electrode grounded. The imposed
electric potential initiated an electroosmotic flow in the chan-
nel and, for electric fields above a threshold value, electro-
kinetic instabilities. The potential drop between the elec-
trodes was held constant at 1, 2, or 3 kV using a voltage
signal from a LabVIEW-controlled DAQ card~National In-
struments Inc.! coupled to a high voltage amplifier~10/10b,
Trek Inc., NJ!. Fluid motions were observed using an in-
verted, epi-fluorescent microscope~Nikon TE300! and a 43
microscope objective~numerical aperture of 0.2!. To increase
the field of view, a 0.63 demagnifying lens was used, result-
ing in an overall magnification of 2.43. A CCD camera
~CoolSnap fx, Roper Scientific Inc., AZ! with a 12-bit inten-
sity digitization resolution recorded the images. Image
signal-to-noise ratio and frame rate was improved by binning
individual CCD pixels to form 434 super pixels, which re-
sulted in final binning dimensions of 26.8326.8mm in the
image plane. The exposure time and frame rate were, respec-
tively, 15 ms and 10 frames per second.

B. Results

A representative set of images from experiments con-
ducted at 1, 2, and 3 kV applied potentials are shown in Fig.
2. The potentials were applied over the 40 mm channel
length; these were equivalent to applied fields of 25000,
50000, and 75000 V/m, respectively. In each case, the top
figure of each series shows the initial, undisturbed interface
between the dyed and undyed buffer streams in the channel
(t50). The successive images in each column show the
temporal evolution of the imaged dye under a constant, DC
potential. In this color scheme, blue corresponds to the un-
dyed, low-conductivity stream, and red to the dyed high con-
ductivity stream. For a field of 25000 V/m, the interface was
only slightly perturbed and only slight fluctuations were ap-
parent in the images captured at 4.0 and 5.0 s. At the two
higher applied potentials, the interface exhibited a rapidly
growing wave pattern within the first 0.5 s. The unstable
fluid motion in the channel buckled the interface and pro-
ceeded to stretch and fold material lines. The transverse and
fluctuating velocities associated with this unstable motion
resulted in rapid mixing of the two streams. At the 75000
V/m applied field, the channel reached a well-stirred state
with nearly homogeneous concentration fields observable
within 5 s. Qualitatively, the observed dynamics of the inter-
face may be described as follows: First, the interface buckled
into a wave-like pattern with spatial wavelengths ranging
from 1 to 2 times of the spanwise channel width. Next, low-
intensity, unseeded regions extended into the dyed region of
the flow in a series of finger-like structures aligned with the
concentration minima in the initial wave~e.g., see the 1.0 s
image at 50000 V/m and, especially, the 0.5 s image at 75000
V/m!. Next, the interface and fingering structures broke
down into a more complex pattern with concentration fluc-
tuations occupying the full width of the channel. At this late
stage, rolling structures were sometimes apparent. Finally, as
the complex velocities associated with the instability

FIG. 1. Schematic of the setup used for microchannel flow experiments. The
channel is 1 mm wide~y!, 100mm deep~z!, and 40 mm long~x!. Two buffer
solutions with differing electrical conductivities are introduced into the mi-
crochannel using a syringe pump, resulting in a single buffer stream with a
spanwise electrical conductivity gradient. Upon the application of a high
voltage along the streamwise direction, the width of the diffuse conductivity
interface is approximately 750mm at the imaging location, halfway between
the inlet and outlet of the capillary. The shape and thickness of the conduc-
tivity field is derived from the residence time of the interface in the channel
~;12 s! before the activation of the electric field and as it flows from the
inlet to the viewing area.

TABLE I. Parameters and fundamental scales.

Symbol Description Value

eo Universal permittivity coefficient 8.85310212 C/V•m
e r Relative permittivity 78.3
e Permittivity 6.93310210 C/V•m
m Absolute viscosity 1023 kg/m•s
ro Density for water 103 kg/m3

D Diffusivity 2.031029 m2/s
w Mobility 8.2310213 mol•s/kg
F Faraday constant 9.653104 C/mol
zo Reference EDL zeta potential 27.031022 V

DCo Molar concentration difference 3.731027 mol/m3

Co Molar concentration 3.331022 mol/m3

H Half-width of the channel 5.031024 m
Eo Typical value for impose field 2.53104 V/m
Uev Electroviscous velocity scale 2.231021 m/s
T Time scale 2.431022 s
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stretched and folded material lines, the dye distributed
evenly throughout the channel, making it difficult to further
observe liquid motion. The largest transverse velocities in the
experiments~observable by the initial transverse motion of
the interface! were roughly 0.1–5 mm/s for applied fields of
25000–75000 V/m. Again note that diffusive transport of the
dye in this experiment was negligible so that the homoge-
neous dye concentration at the later times of the 50000 and
75000 V/m experiments were indicative of a well-stirred
state.

III. THEORETICAL FORMULATION

The description of experiments given above serves as an
introduction to the problem and describes observed features
of electrokinetic flow instability. We now turn to a theoretical
formulation of the flow following a general framework pro-
vided by Melcher.15 We start with general charge conserva-
tion equations, perform scaling analysis, and obtain a set of
simplified equations that is suitable for the parameter range
of our experiments.

A. Governing equations

We start with the conservation laws for a dilute, two-
species electrolyte solution:15

]C1

]t
1v•¹C15w1¹•~z1FC1¹F!1D1¹2C1 , ~1!

]C2

]t
1v•¹C25w2¹•~z2FC2¹F!1D2¹2C2 , ~2!

where Ci8s are the molar concentration of the electrolytes,
wi8s are the coefficients of mobility,F is the Faraday con-
stant,Di8s are the diffusive coefficients,zi8s are the valence
numbers~we assumez152z251), and F is the electric
potential. The Poisson equation for the electric field is then

e¹2F52rE , ~3!

where

rE5(
i 51

2

ziFCi . ~4!

HererE is the charge density, ande5e reo is the permittivity
of the liquid. In the Poisson formulation, we assume the
permittivity of the liquid is uniform as we are interested in
nearly isothermal electrokinetic microflows of dilute electro-
lytes ~e.g., biological buffers with order 10 mM concentra-
tions!. In such systems, electrolyte conductivity field is
dominated by ion densities and a uniform ion mobility, and
electrolyte permittivity is that of the solvent~typically wa-
ter!. To complete the system we need also the continuity and
conservation of momentum equations for the liquid,

¹•v50, ~5!

rS ]v

]t
1v•¹vD52¹p1m¹2v2rE¹F. ~6!

Here,r is the density,v is the flow velocity,p is the pressure,
andm is the absolute viscosity. The electric flux and species
conservation are coupled to the mechanics through the elec-
tric force 2rE¹F in the momentum equation.

For our problem it is more convenient to transform the
system of molar concentrations (C1 ,C2) into the quantities
of (rE ,s), using Eq.~4! and the definition for conductivity

s[(
i

wizi
2F2Ci . ~7!

For the simple case of two species, Eqs.~4! and ~7! consti-
tute a reversible transformation from the pair (C1 ,C2) to
(rE ,s), with the inverse transform

C15
s1w2FrE

F2~w11w2!
,

C25
s2w1FrE

F2~w11w2!
.

If we further assume, for simplicity, that other properties of
the electrolytes are symmetric, i.e.,w15w25w, D15D2

5D, andz152z251, we can re-write Eqs.~1! and ~2! in
terms ofrE ands, as

]rE

]t
1v•¹rE5¹•~s¹F!1D¹2rE , ~8!

FIG. 2. ~Color! Sample images from the experiment, shown for applied
fields of 25000, 50000, and 75000 V/m, corresponding to the first, second,
and third column. Images obtained at various times are shown for each
column. The electric field and bulk flow directions were from left to right.
High voltage was applied as a Heaviside function att50 s. Each image
corresponds to a physical area 1 mm wide~y! and 3.6 mm long~x!. The
depth of the channel is 100mm along thez direction~into the page!. At the
time of the application of the high voltage, the diffuse conductivity interface
was approximately 750mm wide at the imaging location. Small amplitude
waves observed att50.5 s quickly grow and lead to rapid stirring of the
initially distinct buffer streams. The instability quickly stretches and folds
material lines and, after about 4 s for the 75000 V/m applied field, results in
a well-stirred, relatively homogeneous dye concentration field. The time of
the images in each row are shown in the figure.
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]s

]t
1v•¹s5F2w2¹•~rE¹F!1D¹2s. ~9!

Equations~8! and~9!, together with~3!, ~5!, ~6!, and appro-
priate boundary conditions, completely define our system of
interest.

B. Scaling and simplifications

We introduce the following scales for the nondimension-
alization of our governing equations:

@v#5Uev , @L#5H, @ t#5H/Uev ,

@s#5wF2Co , @F#5EoH, @rE#5FDCo ,

@r#5ro , @p#5mU/H, @z#5zo .

Herez is the EDL zeta potential~discussed below!. The val-
ues we adopt for these scales are listed in Table I, and are
chosen to best represent the experiments in Sec. II. The ion
diffusivity and mobilities are averages of the values of po-
tassium chloride ions which dominate the conductivity field.

A few remarks on the value of the scales we choose are
appropriate. First, the scale for the charge density is chosen
such that the electric field generated by charges in the bulk
matches the imposed one in magnitude@see Eq.~3!#:

FDCo5
eEo

H
,

or

DCo

Co
5

eEo

FCoH
;1.031025.

The choice of characteristic length in this relation is appro-
priate as we are interested in cases where the diffusive length
scale is on the order of the spanwise channel widthH. Be-
cause the charge density is induced by the molar difference
of the two species, the smallness of the parameterDCo /Co

implies the well-known electroneutrality assumption.10,11,15

This assumption states an approximately net neutral condi-
tion of the form

C1'C2 .

However, the finite difference between the concentration of
the two species is proportional to the net charge in the sys-
tem and, although small compared toCo , can easily generate
a significant electric body force term that must be considered
in the equations of fluid motions.~We have confirmed with
nonlinear numerical simulations of these equations that the
generated field in unstable–rapid mixing conditions is com-
parable to or greater than the applied field in magnitude.!
Second, the velocity scale is derived from the balance of
viscous force with the electric body force in the momentum
equation~6!, following Hoburg and Melcher:10

Uev[
eEo

2H

m
. ~10!

Note that we do not use the apparent, ‘‘obvious’’ velocity
scale that is observed experimentally in the base flow, that is,
the electroosmotic velocity

Ueo[2
ezoEo

m
. ~11!

This is the well-known Helmholtz–Smoluchowski formula-
tion which we use to relate electroosmotic velocity to the
wall zeta potential and electric field. This velocity is estab-
lished within the EDL and determines the bulk advection of
scalars in the flow field. However, as we will show later in
Sec. IV, for the unstable, rapid-mixing regime of interest
here, the electroviscous velocity scaleUev is correct in char-
acterizing the fluctuations associated with EK instabilities.

Our governing equations in dimensionless form then
read

DCo

Co
S ]rE

]t
1v•¹rED5b¹•~s¹F!1

DCo

RaeCo
¹2rE ,

~12!

]s

]t
1v•¹s5

DCo

Co
b¹•~rE¹F!1

1

Rae
¹2s, ~13!

¹2F52rE , ~14!

¹•v50, ~15!

ReS ]v

]t
1v•¹vD52¹p1¹2v2rE¹F, ~16!

where

Rae[
UevH

D
5

eEo
2H2

mD
;5.43104, ~17!

is an electric Rayleigh number~this use of Rayleigh number
to denote the ratio of diffusive to convective time scale is
similar to that by Baygents and Baldessari!,11

Re[
r0UevH

m
5

roeEo
2H2

m2 ;100, ~18!

is the Reynolds number. The dimensionless numberb is de-
fined as

b[
wFEo

Uev
;931023, ~19!

which is the ratio of the electrophoretic ion velocity to the
electroviscous flow velocity.

We should mention that as the magnitude of the imposed
field ~and subsequently the scaleEo) changes, the dimen-
sionless numbersDCo /Co , b, Rae , andRechange as well,
and the flow can be brought into different regimes. However,
for the electric field range of interest,DCo /Co remains a
very small quantity, which results in further simplifications
of our system.36 Namely, the divergence term is dominant in
Eq. ~12!, so the equation reduces to

¹•~s¹F!50. ~20!

This relaxation assumption states that the generated field in-
stantaneously satisfies the divergence condition. If we de-
compose the electric field into a constant, imposed, unidirec-
tional field plus a generated one asE5Eoex2¹f in
dimensional form~or E5ex2¹f in nondimensional form!,
we obtain

]s

]x
5¹•~s¹f!. ~21!
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We denote the generated field withf, and distinguish it from
the total~appliedplus generated! field F. Consequently, Eq.
~13! can be simplified as

]s

]t
1v•¹s5

1

Rae
¹2s, ~22!

which is a natural consequence out of the electroneutrality
condition.

Equations~14!–~16!, ~21!, and ~22! constitute a com-
plete system fors, rE , f, p, andv, and will be the set of
governing equations.

It is instructive to compare this formulation for EK flow
instabilities to previous work on EHD flow instabilities.
First, the inclusion of the diffusive term in the conservation
of conductivity equation~22! is suggested by the work of
Baygents and Baldessari.11 Although they examined a differ-
ent electric field and conductivity gradient configuration,
Baygents and Baldessari found that molecular diffusion had
an important stabilizing effect and is responsible for the ex-
istence of a threshold electric field below which their EHD
flow was stable. Our modeling work shows that the diffusive
conductivity term in Eq.~22! is indeed required to capture a
threshold instability condition in our flow. The model of
Hoburg and Melcher,10 who explored a configuration similar
to ours~with a conductivity gradient perpendicular to applied
field! neglected this term as their flow length scales of inter-
est were larger than those of our 10031000mm channel
cross-section. Our convective electroosmotic flow boundary
conditions~see next section! are also a new characteristic not
found in the initially stationary-liquid EHD work. Another
difference between this and the work of Hoburg and Melcher
is that we consider a more realistic conductivity profile con-
sistent with our experiments.~Note that Hoburg and Melcher
also used a more realistic diffusive profiles in later studies of
different flow configurations, see for example, Ref. 18.!
Lastly, we consider both two- and three-dimensional flows,
and solve the fully nonlinear equations in the two-
dimensional case.

C. Boundary conditions

In our analysis we shall assume periodicity in the
streamwise~x! direction, and prescribe the following~dimen-
sionless! boundary conditions on the walls:

¹f•n50, ~23!

¹s•n50, ~24!

v"t5
1

Rv
zE"t, ~25!

v"n50, ~26!

where t and n are the tangential and normal vectors of the
wall, respectively. Equations~23! and ~24! are respectively
the condition that the boundary is nonconductive, and that
there is no ion diffusion across the boundaries; Eq.~26! is the
condition that the wall is impenetrable. Special attention
should be paid to Eq.~25!. This equation is simply the di-
mensionless form of the Helmholtz–Smoluchowski formula-

tion ~11!, but with z being a function of local conductivity,
and E being the instantaneous local electric field. Our non-
dimensionalization gives us another dimensionless group

Rv[
EoH

2zo
;5.631023, ~27!

which represents the electroviscous to electroosmotic veloc-
ity ratio.

To close the system Eq.~25! can be combined with the
following approximate empirical correlation for the nondi-
mensional zeta potential:

z5S C

CR
D n

,

where CR is a reference concentration at whichz* 5zo

52731022 V. We take its dimensional value asCR*
51.0 mol/m3, which correspond to a dimensionless value of
CR'30 in our current scheme of nondimensionalization. For
the power indexn, classical EDL theory would suggest a
value ofn521/2, which assumes a constant surface charge
density.7 However, more recent models of EDL physics
~Scaleset al.30! suggest a somewhat weaker dependence ofz
on ion density. In this paper, we assume an approximate
value ofn521/3 as suggested by the experimental work of
Yao et al.31 who measured zeta potentials of borosilicate sur-
faces. Our diffusive ohmic model formulation, therefore,
couples with the physics of the EDL only through a slip
velocity which is dependent on local ion density.

Lastly, note that in nondimensional termss'2C from
the electroneutrality assumption.

IV. TWO-DIMENSIONAL MODEL

In this section we assume that the flow exists only in the
x-y plane, with no dynamics in thez direction. This analysis
will capture the basic physics of the instability mechanisms
due to the conductivity gradient. As we discuss in the next
section, the primary defect of this model is the neglect of the
influence from the side walls in thex-y plane. The experi-
mental channel is ‘‘shallow’’~in z! compared to the height
~in y!. ~Here we refer to a channel as shallow if its aspect
ratio @z#/@y#!1, and ‘‘deep’’ if @z#/@y#@1 such that the
two-dimensional simplification can be assumed.! Despite its
limitations, the two-dimensional model provides a frame-
work to understand the full three-dimensional physics and
the experimental results.

We will start the section by conducting a linear stability
analysis of the governing equations to analyze the behavior
of the system. We follow by a two-dimensional nonlinear
simulation to demonstrate the basic features of the simulated
flow and draw comparisons to the experiments.

A. Linear analysis

We use a linear stability analysis to predict the regimes
where we would expect rapid mixing to occur. We start by
defining a base state that satisfies the governing equations.
The base state is assumed to be a function ofy and t only.
This simple assumption, coupled with two-dimensionality
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and continuity, demand that velocity field iny is zero. The
base state of conductivitys0(y,t) thereby obeys the simple
diffusion equation

]s0

]t
5

1

Rae
¹2s0 ,

subjected to the Neumann boundary condition
@]s0 /]y#y56150. To determines0(y,t50) we solve a pre-
liminary problem where the upper and lower halves of the
channel are assumed to be of uniform, but differing conduc-
tivities separated by an infinitely sharp gradient. The inter-
face is allowed to diffuse for a time equal to the advection
time from the channel inlet to the viewing area of the experi-
ment. The resulting conductivity profile is then used as an
initial condition to the instability analysis.

The difference in the conductivity in the two channel
halves induces different electroosmotic velocities at the up-
per and lower boundaries of the channel. The resulting base
state flow field under these assumptions is a sheared Couette
flow

u05
U11U21

2
1y

U12U21

2
, ~28!

where the velocities at the boundaries (U1 and U21) are
provided by Eq.~25!. The base values for the generated elec-
tric potential and charge density are zero.

The base solution satisfies the governing equations, and
we check the stability of this base state with respect to small
perturbations. We assume periodicity inx and expand the
base solution in normal modes asf 5 f 0(y,t)1e f̂ (y,t)eikx,
wheree is a small parameter.32 The linearized equations for
the disturbances read

052 ikŝ1s0¹2f̂1
ds0

dy

]f̂

]y
, ~29!

]ŝ

]t
52 iku0ŝ2 v̂

ds0

dy
1

1

Rae
¹2ŝ, ~30!

ikû1
] v̂
]y

50, ~31!

]û

]t
52 ikuoû2 v̂

duo

dy
1

1

Re
~2 ik p̂1¹2û2¹2f̂ !, ~32!

] v̂
]t

52 ikuov̂1
1

ReS 2
] p̂

]y
1¹2v̂ D , ~33!

where

¹2[S ]2

]y22k2D .

The boundary conditions become

]f̂

]y
50, ~34!

]ŝ

]y
50, ~35!

û52uoS 1

3

ŝ

so
1 ikf̂ D , ~36!

v̂50. ~37!

The time dependence of the base state introduces a non-
homogeneous function in time that prevents us from assum-
ing the standard separable temporal growthest. We can make
a quasi-steady assumption for the base state and conduct a
traditional linear stability analysis replacing the time deriva-
tives in the above equations as]/]t5s. This quasi-steady
assumption is accurate when the growth rate of the perturba-
tion is rapid with respect to the time scale of diffusion of the
base state conductivity, which is the case of interest when
predicting rapid mixing regimes. When the growth rate of the
disturbance is very slow~i.e., just above neutral stability!,
the streams will significantly mix via molecular diffusion
before the disturbance waves grow large enough to begin to
nonlinearly fold the two fluid streams. To verify the accuracy
of our assumption we have solved the linearized equations
above with and without this quasi-steady assumption; for the
latter we solve the full time-dependent, initial value problem.
We find that the linear flow evolution is identical for either
solution method when the growth rate of the perturbation is
‘‘large’’ ~we shall define a large growth rate via a mixing
criterion below!.

The linearized equations are solved using standard
pseudo-spectral techniques with Chebyshev polynomials as
the basis functions. Under the quasi-steady assumption we
replace the time derivatives in Eqs.~29!–~37! with the eigen-
value s, and solve for the eigenvalues and eigenfunctions.
using the methods outlined in such references by Trefethen33

and Weidman.34 The time dependent simulations of the lin-
earized equations employed spectral methods as well, using
the techniques outlined by Peyret.35 For both methods we
find that 64 points provides adequate resolution at reasonable
computational cost.

B. Linear results

We have obtained, for each wave numberk and applied
field Eo , a set of eigenvalues~the growth rates!, together
with their respective eigenfunctions. In Fig. 3 we show a
contour plot of the growth rates of most unstable eigenfunc-
tion in the wave number-electric Rayleigh number~electric
field! parameter space. The neutral stability curve is obtained
by settingsr[real(s)50. A threshold electric field can be
determined from the minimal value ofEo on the neutral sta-
bility curve. Similar to the results of Baygents and
Baldessari,11 we found that the inclusion of the diffusive
term (1/Rae)¹

2s in Eq. ~22! is crucial for the existence of
the neutral stability curve.

Nevertheless, the neutral stability curve is less interest-
ing in our case for practical purposes. Recall that when the
growth rate is close to zero, our quasi-steady assumption is
not accurate, and the flow will significantly mix~and be
smoothed! by molecular and momentum diffusion before
there is sharp folding of the material. Here we define a fast
growth that will serve as the demarcation between a mixed
and unmixed flow in our analysis. Thisad hoc kinematic
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criterion is preferred over the neutral stability curve to facili-
tate a straightforward comparison with experiments where
observableinstability dynamics lead to rapid mixing. We de-
note adimensionalgrowth rate by

sr* [srUev /H,

and set our rapid mixing criterion to be

sr* ;4 s21. ~38!

A growth rate of this magnitude corresponds to the amplifi-
cation of a perturbation by a factor of 105 in approximately
three seconds. With this growth rate a disturbance of nanom-
eter size will grow to 10% of the channel height in a few
seconds. This growth rate should be observable in our ex-
periments and will serve as a criterion between rapid and
slow mixing regimes in our analysis. The necessity of this
mixing criterion will be demonstrated later in Sec. IV C by
nonlinear numerical simulations, where we will also discuss
the scaling behavior of~i.e., the critical physical forces asso-
ciated with! the instability dynamics.

Using the mixing criterion~38! we find that the two
dimensional analysis under-predicts the mixing threshold
when compared to the experimental data. The experiments
show a strong transition to mixing occurring between applied
fields of E52.53104 V/m and E553104 V/m, whereas
the analysis predicts the mixing threshold to occur at ap-
proximatelyE51.253104 V/m.

Using our model we also investigate the sensitivity of
the mixing results to changes in conductivity ratio of the two
streams. We keep the concentration of the lower stream fixed
and vary the concentration of the upper stream. In Fig. 4 we
show the predicted mixing boundary in wave number and
electric field parameter space for various conductivity ratios.
We see that the critical field is lowered for larger values of
conductivity ratio across the stream. Note that this theory
also predicts that the most dangerous wave number remains
essentially unchanged (k'2.5) as the conductivity ratio
changes. This trend is consistent with preliminary experi-

ments we have performed at conductivity ratios of 2, 5, and
10 which will be discussed in a future paper.

In Fig. 5 we show the unstable eigenfunctions of the
linearized equations at an electric field of 2.53104 V/m. The
stream function assumes the standard relation to the fluid
velocity components as

S ]C

]y
,2

]C

]x D5~u,v !,

and is obtained through

FIG. 3. Contour plot of growth rates (sr* ) versus wave number and electric
Rayleigh number. Dimensional applied electric field is provided on the right
axis. For the case plotted here, the initial interface of the two fluids approxi-
mately extends between20.75,y,0.75 and the ratio of the conductivity
between the two streams is 10.

FIG. 4. Comparison of the contour corresponding to thesr* 54 s21 growth
rate for the same parameters as Fig. 3, but shown for various conductivity
ratios. We see that the critical electric field required for mixing is lower as
the conductivity ratio increases.

FIG. 5. Eigenfunctions of the most unstable mode for the 2.53104 V/m
situation. The contour plot of the stream function, conductivity, and electric
potential perturbations are shown. There is a set of nearly symmetric eigen-
functions that have streamlines that lean toward the left. The ‘‘1’’ and ‘‘ 2’’
signs denote the local maxima and minima of the plotted functions.
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Ĉ5
i

k
v̂.

We show the disturbance functions for streamlines, conduc-
tivity, and electric potential.

For higher applied fields such that rapid mixing occurs,
the most unstable modes almost always come in pairs, the
~real! growth rates being nearly equal, and the eigenfunctions
being nearly symmetric to each other. Compared with the
exact symmetry~i.e., complex-conjugate eigenvalues, and
eigenfunctions being mirror images! observed by Hoburg
and Melcher,10 the slight asymmetry of our eigenvalues and
eigenfunctions is due to our base electroosmotic flow. Take
for example the case ofEo525000 V/m, at the most un-
stable wave numberk53, the most unstable eigenvalue is
s50.037120.09i , which translates to a dimensional growth
rate of sr* ;16 s21, and a right-traveling wave speed of
si* /k* ;6.6 mm/s. The paired eigenmode assumes a value of
s50.033610.013i , which translates to a dimensional
growth rate ofsr* ;15 s21, and a left-traveling wave speed
of si* /k* ;21.2 mm/s. On the other hand, if we set the base
shear flow as defined by~28! to be uo50, we recover the
symmetry and obtains50.036660.0522i , or sr* ;16 s21,
and waves traveling to the right and left at equal speeds of
;3.8 mm/s. Therefore including the electroosmotic base
state~28! causes a shift of wave speed in the direction of
electroosmotic flow. The magnitude of the shift is;2.7
mm/s, which agrees almost exactly with the average value of
uo from Eq. ~28!, i.e., (U11U2)/2;2.8 mm/s.

Aside from the phase speed change in the instability
waves, the electroosmotic velocity does not have a strong
influence on the stability physics for our current parameter
range of interest. Nonetheless in a simultaneous work by
three of us~C.H.C., H.L., J.G.S. together with S. K. Lele!,
the electroosmotic velocity is found indeed important for a
different parameter range, and a critical value ofRv , which
is defined as the ratio of electroviscous to electroosmotic
velocity, serves to demarcate between absolute and convec-
tive instability @see C.-H. Chen, H. Lin, S. K. Lele, and J. G.
Santiago, ‘‘Convective and absolute electrokinetic instability
with conductivity gradients,’’ J. Fluid Mech.~submitted!#.
We refer the readers to that study for details. For the current
paper, we simply point out that becauseRv!1 @Eq. ~27!#,
electroosmotic flow has only minor influence, and our insta-
bility is dominantly absolute in nature, which is consistent
with the temporal growth of the instability waves.

C. Two-dimensional „2D… numerical simulation

We solve the governing Eqs.~14!–~16! and ~21!–~26!
numerically to capture the nonlinear evolution of the insta-
bility observed in the experiments. The initial conditions are
the base states that have been discussed in the linear analysis,
and a white noise perturbation is supplied with an amplitude
of 1025 with respect to the base state.

The equations are solved using a pseudo-spectral collo-
cation method. We use Chebyshev polynomials to expand the
equations in the cross stream direction, and Fourier series in
the streamwise direction. The details on the implementation

of similar problems are found in the literature.33,35 The non-
linear terms are explicitly integrated forward in time using a
second-order Adams–Bashforth scheme, while diffusive
terms are integrated using a Crank–Nicholson scheme to
achieve numerical stability. The momentum equation is
solved with the velocity-pressure formulation outlined by
Peyret.35 Resolution of 64 points in both directions provides
adequate results, and finer grids were used to test for conver-
gence. The methods we used are standard and well-
documented; we will not provide the details herein. To aid in
direct comparison with the experimental visualizations, we
solve an advection-diffusion equation for a passive tracer
with a 3310211 m2/s diffusivity to simulate the motion of
the dye molecules observed in the experiments. Because the
dye has a much lower diffusivity~compared with 2
31029 m2/s for the electrolytes!, it avoids the diffusive ef-
fects in numerical visualization, exhibits a sharper interface,
and better characterizes material line distortions observed in
experiments.~In fact we shall show in Sec. IV D that for the
more violently unstable regime, i.e., the high electric Ray-
leigh number dynamics, diffusion of the conductivity field is
largely negligible so that the observed dye follows closely
the evolution of the conductivity field.!

First we demonstrate the necessity of the mixing crite-
rion ~38! as we have proposed in Sec. IV B. Shown in Fig. 6
is the nonlinear evolution of the instability at applied fields
of 6250, 8500, and 12500 V/m. The linear theory predicts
growth rates ofsr* 51, 2, and 4 s21, respectively. Each col-
umn of snapshots corresponds to different growth rates as
given by higher driving electric fields. In the first column of
Fig. 6, the distribution of the dye is governed by molecular
diffusion, even though the linear stability analysis demon-
strates that the flow is unstable. The simulation evolves for
18 seconds before we see visual evidence of waves. As we
increase the electric field to observe different growth rates
we see that the instability can begin to mix the flow more
rapidly than molecular and momentum diffusion can smooth
it. The main point to be taken concerning Fig. 6 is that there
is a regime where the quasi-steady analysis predicts the flow
to be unstable, but the growth rate is not sufficient to be of
practical interest as a rapid effect.

In Fig. 7 we show the nonlinear evolution of the simu-
lated dye field at stronger electric fields. The two right col-
umns have applied fields stronger than those shown in Fig. 6
and are well within the rapid mixing regime. For comparison
we also show in the left column the case ofEo

510000 V/m which is just below the rapid-mixing thresh-
old. The model reproduces many of the essential features
observed in the experiments, including the shape and initial
break-up dynamics of the interface, the transverse growth of
a wave pattern in the interface, and a roll-up of scalar struc-
tures observed at later times. Note the similarity in the most
unstable~and most apparent! wave number at later times
between the simulation and experiments.

Despite similarities between wave number and the dy-
namics of the interface breakup, the threshold imposed fields
from both the linear and nonlinear predictions are lower than
those shown for the experiment in Fig. 2.@In fact, thead hoc
criterion ~38! was suggested to us by the nonlinear simula-
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tions shown in Fig. 6.# For example, compare the evolution
of the dye at 25000 V/m from the experiments~Fig. 2, col-
umn 1! and the simulation~Fig. 7, column 3!. We see that the
simulation at 25000 V/m predicts a well-stirred flow field in
less than three seconds while experiments show that the flow
is stable on the time scale of the experiments. The simulation
of 25000 V/m is qualitatively similar to the experimental
flow at 75000 V/m~Fig. 2, column 3!. Despite the discrep-
ancy in the magnitude of the applied field, our simulation
captures a threshold field and scalar features qualitatively
similar to the experiment. In Sec. V we will try to address
possible causes for the under-prediction of the threshold
electric field by including three-dimensional effects.

D. Discussion

In both our linear and nonlinear calculations we have
given our results indimensionalunits, i.e., we used the di-
mensional field strength to determine instability threshold,
and a dimensional growth rate to quantify instability growth
rate. This approach has been adopted primarily to facilitate
direct comparisons with experiments. In this section we turn
to discuss the scaling characteristics of the instability, par-
ticularly in light of the electroviscous scaling proposed by
Hoburg and Melcher.10

In Hoburg and Melcher10 the authors defined an electro-
viscous time

tev[
H

Uev
5

m

eEo
2 , ~39!

and demonstrated that instability growth rates scale astev .
Here we examine this instability scaling behavior using our
nonlinear simulations. In Fig. 8~a! we plot dimensional ve-
locity as a function of dimensional time for various applied
fields; the velocityvmax is defined as the maximum trans-
verse velocity in the nonlinear simulations at each instant.
For each applied field~with the exception of the lowest!,
vmax grows exponentially to a peak value consistent with the
most vigorous stage of the instability, and then relaxes to a
slowly decaying value as a well-mixed state is achieved. The
curves show the general trend that for higher field, the insta-
bility grows faster, and a higher peak value forvmax is ob-
tained. In Fig. 8~b!, we scalevmax and t with the electrovis-
cous scalesUev andtev , respectively. Under this scaling, we
find the dynamics ofvmax nicely collapse to a single curve
for a wide range within the strongly unstable regime (Eo

58500, 17500, and 25000 V/m!. Note that these three evo-
lution curves nearly exactly overlap, with identical dimen-
sionless growth rates and peak values ofvmax/Uev . In con-
trast, we also observe minor deviations from the

FIG. 6. ~Color! Snapshots of the dye field at various instances in time for
different driving electric fields. The electric fields~applied att50) and bulk
flow are directed from left to right. Each column indicates a different ap-
plied field and the rows within each column present selected snapshots in
time. The image correspond to a physical domain of 3.6 mm31 mm. ~Note
that the images have been slightly stretched in they direction to give best
visualization.! The left-hand column corresponds to an applied field ofE
56250 V/m, the middle column toE58500 V/m, and the right-hand col-
umn to E512500 V/m, and the linearly predicted growth rates aresr*
51 s21, sr* 52 s21, and sr* 54 s21, respectively. The time for noticeable
waves to develop is decreased as the field is increased. For the purposes of
this paper, we decide that the mixing provided bysr* 54 s21 indicates a
well-mixed flow in the times of practical interest.

FIG. 7. ~Color! Sample images from the nonlinear numerical simulations for
three different applied fields~columns! and various times~rows!. The elec-
tric field and bulk flow are directed from left to right. High field is applied
at t50 s. Each image corresponds to a visualization of a passive scalar in a
physical domain of 1 mm wide~y! by 3.6 mm long~x!; thez ~depth! dimen-
sion is not modeled in these simulations.~Note that the images have been
slightly stretched in they direction to give best visualization.! An initial
white-noise perturbation with an amplitude of 1025 with respect to the base
state is provided. The images display a passive tracer that has the diffusivity
of the dye used in the experiments. The images in each row are taken at the
same time as shown in the figure.
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electroviscous behavior atEo56250 and 50000 V/m, and a
major deviation atEo54500 V/m when the field strength
approaches the instability threshold.

The collapse of the dynamics ofvmax for the mid-range
of the significantly unstable regime is well explained by the
electroviscous time and velocity scaling arguments of
Hoburg and Melcher.10 The limitation of this scaling at high
and low electric field values can be explained by comparing
the electroviscous time to the time scales of molecular and
momentum diffusion. In Hoburg and Melcher10 the authors
define a momentum diffusion time scale as

tv[
rH2

m
;0.25 s, ~40!

which signifies the relative importance of the inertial force in
the momentum equation. As suggested by the work of Bay-
gents and Baldessari,11 we also have yet another important
time scale, the diffusion time

td[
H2

D
;125 s. ~41!

Ratios of these times scales yield dimensionless numbers we
defined earlier:

Re5
tv

tev
}Eo

2, Rae5
td

tev
}Eo

2, ~42!

and both these numbers increase quadratically as applied
field increases. For higher values of the field strength~such
as theEo550000 V/m case in Fig. 8!, the electric-field-
driven flow is characterized by a Reynolds number of order
unity or greater, and so inertial forces affect the dynamics of
the instability and we expect deviations from the electrovis-
cous behavior. However, as pointed out in Hoburg and
Melcher,10 the dependence of the instability dynamics onRe
is weak in this regime, and so the deviation is apparent but

not dramatic. For lower values of field strength~such as the
6250 V/m case in Fig. 8!, on the other hand, deviations from
the electroviscous behavior is due to the increased relative
importance of the simple molecular diffusion associated with
small electric Rayleigh numbers and a~relatively! small dif-
fusive time scaletd . As one further decreases the field
strength to approach the instability threshold~e.g., theEo

54500 V/m case of Fig. 8!, molecular diffusion plays the
dominant role in the development of the flow field and the
electroviscous scaling is no longer valid. The growth of dis-
turbances is mostly quenched by diffusion and only marginal
instability is observed.

Note that even though the electroviscous velocity and
times scales adequately collapse the instability dynamics
across applied fields, the absolute values of these scales tend
to be significantly larger than the values observed in the non-
linear simulations. For example, the characteristic values of
the scaled, nondimensional velocity and time scales in Fig.
8~b! are of order 0.1 and 103, respectively.~A similar con-
clusion is found in scaling the streamwise disturbance veloc-
ity umax.) However, the derived electroviscous velocity and
time scales used here are based on simplified scaling argu-
ments and are not directly observed quantities in an experi-
ment ~i.e., these are estimates of the internal physical scales
and not quantities directly imposed by the experimentalist!.
Therefore, although these electroviscous scales correctly
scale the dynamics, caution should be used in applying these
derived scales to identify dynamic regimes of the generalized
formulation. For example, the value of the electric Rayleigh
number based on the derived electroviscous velocity scale
@Eq. ~17!# for the Eo56500 V/m case in Fig. 8 isRae

.3400, suggesting that diffusive effect can be safely ig-
nored. However, as our numerical simulation@Fig. 8~a!, dot–
dash# finds, aneffectivetime scale for the instability growth
in this case isteff.20 s, which gives an effective Rayleigh

FIG. 8. Demonstration of the electroviscous scaling. For both graphs, simulations at electric fields ofEo54500~solid!, 6250~dash–dot!, 8500~circles!, 17500
~triangles!, 25000~diamonds! and 50000~dash! V/m are shown. In~a! we plot a dimensionalvmax as a function of the dimensional timet, wherevmax is
defined as the maximum transverse velocity in the field at each instant from the nonlinear simulations. In~b! we scalevmax and t with Uev and tev ,
respectively. The modeling shows that, for a wide range of electric fields~from 8500 to 25000 V/m! of interest here, the various curves collapse almost
identically to a single curve which grows exponentially, overshoots a critical value, and then damps down slowly as mixing progresses. The collapse of the
curves validates the electroviscous processes as the dominant dynamics over most of the range of interest. The 6250 V/m~dash–dot! and 50000~dash! V/m
cases show significant deviation from electroviscous scaling due to increased molecular diffusion and inertial effects, respectively. In the 4500 V/m ~solid!
case~close to the instability threshold!, molecular diffusion dominates the development of the field and the electroviscous scaling is no longer valid.
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number of Raeff[td /teff.6, and which suggests diffusion
processes are important@Fig. 8~b!, dot–dash#. ~This trend of
over-prediction becomes more prominent as one approaches
the instability threshold, e.g., for theEo54500 V/m case,
where the electroviscous scaling is no longer valid.!

V. THREE-DIMENSIONAL MODEL

In the previous sections we have provided a two-
dimensional framework that appears to capture the primary
physics of our flow. The primary limitation in our model is
the two-dimensional assumption. The channel in the experi-
ment is shallow, with an aspect ratio of@z#/@y#50.1. In the
two-dimensional model, we assumed that EDL’s formed on
the upper and lower (y561) boundaries of the channel and
drove a linear Couette flow. In the actual three-dimensional
case, an EDL also forms along the side walls (z56d, where
d[d/H, andd is the half-depth of the channel!, and strongly
drives the flow due to the small depth of the channel. The
three-dimensional flow base state is, therefore, not a simple
Couette profile. Also, the three-dimensional nature of a thin
channel couples the instability dynamics to the side walls via
viscous forces. Below, we present a preliminary assessment
of these three-dimensional effects using a linearized analysis.
A fully nonlinear three-dimensional investigation will be pre-
sented in a future paper.

A. Base state

The base state is assumed to be invariant in the
x-direction and the initial conductivity field is assumed a
function ofy only. By Eq.~21! we find that the conductivity
field induces no electric field, and therefore, does not directly
couple to the momentum equation. The base state conductiv-
ity, therefore, evolves as

]s0

]t
5

1

Rae

]2s0

]y2 , ~43!

subjected to Neumann boundary conditions aty561 and
z56d.

The base state velocity field is determined by the rela-
tionship between the zeta potential and the conductivity of
the fluid at the wall. The flow is driven by the EDL at the
walls y561 andz56d. The velocity in they andz direc-
tions are both zero as provided by continuity and the as-
sumption of invariance in thex-direction. The base state ve-
locity field is determined by the momentum equation

]u0

]t
5

1

Re
S ]2

]y2 1
]2

]z2D u0 , ~44!

subject to the boundary conditions

u05
1

Rv
z~s0!, ~45!

at the wallsy561 andz56d. In the application of interest
the electric Rayleigh number is large in comparison to the
Reynolds number, such that the time-dependent term in the
momentum equation can be neglected.@Recall that the veloc-
ity boundary condition is coupled to the conservation of con-

ductivity relation via ~25!#. Note that in the three-
dimensional case with an addedz-dimension, the flow is
better characterized by a new effective Reynolds number
Red[Ud/n. However, for simplicity, we will continue to
use the Reynolds number defined earlier and the statements
presented here are still true sinceRed,Re. The conductivity
slowly diffuses while the velocity field instantaneously cor-
rects itself to the new boundary condition. The base state
velocity field is therefore well approximated by

05S ]2

]y2 1
]2

]z2D u0 , ~46!

subjected to boundary condition~45!.
In Fig. 9 we compare the velocity profile as a function of

y along the planez50 for the deep~two-dimensional! and
shallow~three-dimensional! EK channels. For deep channels
the flow behaves as a Couette flow as previously assumed.
For shallow channels, the flow closely follows the EDL ve-
locity along the side walls.

B. Linearized model

Again we investigate the stability character of the base
state by linear analysis. We assume that all variables can be
expanded as the base flow plus a small perturbation of a
single Fourier modef 5 f 0(y,z,t)1e f̂ (y,z,t)eikx. The gov-
erning equations for the perturbations read

ReS ]û

]t
1 iku0û1 v̂

]u0

]y
1ŵ

]u0

]z D52 ik p̂1¹2û1 r̂E ,

~47!

FIG. 9. Base state conductivity~left-hand plot! and velocity profiles for a
channel that is deep~middle plot! and shallow~right-hand plot! in the span-
wise, z direction into the page as shown in Fig. 7. In both cases, axial
velocity profile along the transversey direction is shown for the mid-plane
along z50. When the channel is deep and the effects of side walls are
negligible, the flow is dominated by the EDL slip velocity that forms at the
top and bottom walls aty561, resulting in a linear shear. When the chan-
nel is shallow, the flow is dominated by the EDL velocity on the side walls
~in the x-y plane!, and the flow field follows closely the shape of the con-
ductivity profile.
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ReS ] v̂
]t

1 iku0v̂ D52
] p̂

]y
1¹2v̂, ~48!

ReS ]ŵ

]t
1 iku0ŵD52

] p̂

]z
1¹2ŵ, ~49!

¹2f̂52 r̂E , ~50!

ikŝ5s0¹2f̂1
]s0

]y

]f̂

]y
, ~51!

]ŝ

]t
1 iku0ŝ1 v̂

]s0

]y
5

1

Rae
¹2ŝ, ~52!

where

¹2[S ]2

]y2 1
]2

]z22k2D .

The boundary conditions become

¹ŝ•n50, ~53!

¹f̂•n50, ~54!

v̂•t52uoF1

3

ŝ

so
ex1¹f̂G•t, ~55!

v̂•n50, ~56!

where

¹[S ik,
]

]y
,

]

]zD .

This formulation allows us to solve the time dependent prob-
lem evolution of a single Fourier mode in three dimensions,
just as we have done in two-dimensions. In the three-
dimensional case we elect to solve the time-dependent evo-
lution rather than the complete eigenvalue problem.~The ei-
genvalue approach has not been adopted here; the
computation for the three-dimensional case exhibits a poor
scaling with respect to the number of grid points and is pro-
hibitively expensive for our current numerical scheme.! We
initialize the flow with a random perturbation in they andz
directions, and the growth rate for a single Fourier mode is
extracted by fitting the disturbance amplitude to the function
est. We apply the same rapid mixing criterion ofsr* 54 s21

as in the two-dimensional case.
The three-dimensional equations are again solved by

pseudo-spectral methods as outlined by Peyret~2002!.35 We
use Chebyshev polynomials as basis functions in they andz
directions. We again use the Adams–Bashforth method for
integration of the convective terms and Crank–Nicholson for
integration of the diffusive terms.

C. Results

We now recreate Fig. 3 with the three-dimensional linear
analysis and show the growth rate contours forg510 in Fig.
10. By adopting the same kinematic growth-rate criterion
sr* 54 s21, the analysis predicts a critical electric field for

mixing of approximately 50000 V/m for the conductivity ra-
tio of 10, in closer agreement with the experimental data than
the two-dimensional model.

In general when compared with the two-dimensional,
infinite-depth analysis, we found that the critical electric field
under the same conditions was much larger for the three-
dimensional case for each of the conditions. The side bound-
aries in shallow channels~which can support a shear stress!
act to stabilize the flow field. We also note that the linear
three-dimensional model predicts a higher most-dangerous
wave number at higher electric fields. However, which mode
becomes the most rapidly growing in the fully nonlinear re-
gime awaits further study with full nonlinear, three-
dimensional simulations.

One interesting aspect of this problem is the difference
in the physical mechanisms that exist in the two- and three-
dimensional flows. In two-dimensions the instability origi-
nates purely from the within the conductivity gradient. In the
three-dimensional case the flow is strongly coupled to the
side walls. Due to the shallow channel depth and the low
Reynolds number in the cross-stream direction, we expect
that the electroosmotic flow in the channel to be quite uni-
form in the z direction, especially at the onset of the insta-
bility. This implies that the flow in the interior of the channel
is deeply influenced by the velocity boundary condition on
the side walls, which is in turn correlated to the generated
electric field and the EDL. This side wall boundary condition
provides a stabilizing force with respect to the instability
dynamics due only to the conductivity gradient in the bulk
liquid.

VI. SUMMARY

We have presented experimental, numerical, and analyti-
cal results that explain the basic mechanisms behind an elec-
trokinetic mixing phenomena observed in micro-fluidic

FIG. 10. Contour plot of growth ratessr* for different combinations of wave
number and electric field using the three-dimensional analysis. In this case
the interface of the two fluids approximately extends between20.75,y
,0.75 and the ratio of the conductivity between the two streams is 10. This
figure used the same parameters as Fig. 3 for the two-dimensional analysis.
Compared to the two-dimensional model, the contours are shifted to higher
electric fields indicating that the side walls stabilize the flow.@Note that we
have shown the same ranges ofRae (Eo) andk as in Fig. 3.#
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channels. We have presented analysis and computations
based on different sets of assumptions for EK flows in a
long, thin channel with a transverse conductivity gradient.
Our analysis takes into account a shear imposed on the flow
due to the dependence of zeta potential on local concentra-
tion and the effects associated with the diffusion of the con-
ductivity scalar. In the first analysis we assumed that the flow
was purely two-dimensional with neither variations in thez
directions, nor influence from side walls. In the second
analysis we accounted for the side walls and conducted
three-dimensional linearized simulations. In both analyses
we found a threshold electric field above which the flow
becomes highly unstable and rapid mixing occurs. We also
found that the coupling of the flow to the side walls in the
three-dimensional model helps to stabilize the conductivity
gradient. We have presented a mixing criterion useful for
comparisons between model and experiments, and have ex-
plained key differences between the two- and three-
dimensional analyses. We have confirmed the validity of the
electroviscous scaling proposed by Hoburg and Melcher10

with nonlinear numerical simulations, and discussed its
range of validity. Our model is able to predict general trends
in the data, and many of the basic aspects of the observed
flow field. Our results demonstrate that the general frame-
work as pioneered by Hoburg and Melcher,10 and extended
by Baygents and Baldessari,11 is suitable for the study of EK
instabilities provided boundary conditions, base states, and
diffusion effects consistent with electroosmotic flow in mi-
crochannel systems are used. Future work will involve more
detailed three-dimensional simulations to examine how the
nonlinear regimes are impacted by the effect of the side
walls.

The models presented in this work are useful in optimi-
zation studies, as parameter space can be spanned in simula-
tions more quickly than in the laboratory. Work described by
Oddy et al.27 has demonstrated that oscillatory electric field
can potentially drive even more vigorous mixing. The mod-
els presented in this work can be used to optimize the form
of forcing functions, to design the shape of a micromixer,
and to develop optimal control strategies for both micro-
mixing and the suppression of instabilities.
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