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Laminar flow of two miscible fluids in a simple network
Casey M. Karst, Brian D. Storey,a) and John B. Geddes
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(Received 13 July 2012; accepted 4 February 2013; published online 11 March 2013)

When a fluid comprised of multiple phases or constituents flows through a network,
nonlinear phenomena such as multiple stable equilibrium states and spontaneous
oscillations can occur. Such behavior has been observed or predicted in a number
of networks including the flow of blood through the microcirculation, the flow of
picoliter droplets through microfluidic devices, the flow of magma through lava
tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear
phenomena in a network with many inter-connections containing fluids with complex
rheology may seem unsurprising, this paper demonstrates that even simple networks
containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The
paper describes a theoretical and experimental investigation of the laminar flow of two
miscible Newtonian fluids of different density and viscosity through a simple network.
The fluids stratify due to gravity and remain as nearly distinct phases with some
mixing occurring only by diffusion. This fluid system has the advantage that it is easily
controlled and modeled, yet contains the key ingredients for network nonlinearities.
Experiments and 3D simulations are first used to explore how phases distribute
at a single T-junction. Once the phase separation at a single junction is known, a
network model is developed which predicts multiple equilibria in the simplest of
networks. The existence of multiple stable equilibria is confirmed experimentally
and a criterion for existence is developed. The network results are generic and could
be applied to or found in different physical systems. C© 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4794726]

I. INTRODUCTION

When a fluid comprised of multiple phases or constituents flows through a connected fluidic
network, it has been observed in different applications that the phase distribution may exhibit
unsteady or non-unique flow for fixed inlet conditions. Such heterogeneous distribution of phase
within network flows has been studied at a variety of scales. At the micro-scale, the flow of droplets or
bubbles through microfluidic networks can demonstrate bistabilty and spontaneous oscillations.1–5

These network nonlinearities have been exploited by researchers who have demonstrated microfluidic
memory, logic, and control devices.3–5 On the macro-scale, models of magma flow with either
temperature-dependent viscosity6 or volatile-dependent viscosity7 have shown the existence of
multiple solutions on the pressure-flow curve which can lead to spontaneous oscillations.

Another network that can exhibit complex behavior is micro-vascular blood flow. Nobel prize
winner August Krogh noted the heterogeneity of blood flow in the webbed feet of frogs in the early
1920s.8 In the Anatomy and Physiology of Capillaries he wrote9

In single capillaries the flow may become retarded or accelerated from no visible cause; in capillary
anastomoses the direction of flow may change from time to time.

Numerous researchers have confirmed these observations over the years. De Backer et al.
reported the first visualization of micro-vascular flow in critically ill patients and observed alterations
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in red blood cell distribution in patients with sepsis.10 Their videos (in their supplementary materials)
capture the heterogeneity of blood flow that Krogh referred to; spontaneous changes in flow speed
and spontaneous change in the direction of flow in loops.

The distribution of red blood cells in micro-vascular blood flow is often interpreted as evidence
of biological control. If the flow in a vessel increases, it is assumed that the diameter of the
vessel responds in order to auto-regulate the flow. This vasomotion is assumed to be the cause for
oscillations in the micro-circulation.11 While the importance of vasomotion cannot be denied, there
is significant evidence that fluctuations in cell distributions in micro-vascular networks can be due to
inherent instabilities.12, 13 In 2007 Geddes et al. demonstrated that two important rheological effects
are necessary for the existence of multiple equilibria and spontaneous oscillations in microvascular
networks—the Fåhræus-Lindqvist effect, which governs viscosity of blood flow in a single vessel,
and the plasma skimming effect, which describes the separation of red blood cells at diverging
nodes.14

The rheology of blood has been well studied, with the first comprehensive measurements
conducted by Fåhræus and Lindqvist in 1931.15 While blood rheology has many complicated details,
for the existence of multiple equilibria the only required ingredient is that viscosity is a nonlinear
function of red blood cell concentration (hematocrit).14 Such concentration dependent viscosity
relationships are common to many systems involving multiple fluids. In a recent experiment, we
(J.B.G. and B.D.S.) demonstrated that bistability exists in a simple network involving two miscible
and well mixed Newtonian fluids of different viscosities.16 These experiments used sucrose solution
and water, demonstrating that for existence of multiple equilibria in the pressure-flow curves, there
is no need for complex rheology.

Plasma skimming is another source of heterogeneity in microvascular networks.14 Krogh in-
troduced the term plasma skimming in 1921 in order to explain the disproportionate distribution of
red blood cells observed at single vessel bifurcations in vivo.8 In the absence of plasma skimming,
the hematocrit in two downstream vessels of a bifurcation would equal that of the feed vessel.
Numerous authors have demonstrated plasma skimming in vitro and in vivo and many attempts
to measure the plasma skimming function have been made.17–22 These measurements have led to
empirical relationships which are a critical component of the theory and simulation of microvascular
flow.

Plasma skimming (or more generally phase separation) exists in numerous other fluid systems.
In two fluid systems, it is commonly observed that the phase fraction after a diverging bifurcation
is different than that in the feed. Probably the most widely studied example of such phase maldistri-
bution is gas-liquid two phase flow. This system has important technological applications in power
and process industries and oil production. In many process applications phase maldistribution can
have detrimental consequences for downstream equipment,23 while in some cases the phenomenon
is exploited to build simple phase separators.24 Extensive experimental work on gas liquid flow has
been conducted over the past 50 years and these studies have been extensively reviewed.23, 25, 26 All
this work has shown that significant separation can occur which is a function of the inlet volume
fractions, the geometry of the bifurcation, the fluid properties, and the two-phase flow regime. Simple
models can capture some of the experimental features of this system.27

In applications for the process and petroleum industry, phase separation in liquid-liquid flows are
less well-studied though several recent papers have emerged.28–30 These studies have typically been
conducted with immiscible fluids and at high Reynolds number where the flows are turbulent and
often the state of the incoming two-phase flow to the bifurcation is critical to the phase separation.
Similar phase separation effects occur in systems with liquid-vapor flows with evaporation or
condensation. The impact of phase maldistribution in two-phase flow has been shown to impact
network flows in refrigeration systems31 and solar power systems.32

In this work we continue a systematic theoretical and experimental investigation of hetero-
geneity in simple network flows involving ordinary fluids.16 Our aim is to begin to understand the
underlying mechanisms that govern the phase distribution within networks involving fluids with
more than one constituent. We focus on laminar viscous flow of two miscible fluids with different
viscosity and density. The fluids stratify in the system due to gravity and remain as nearly dis-
tinct phases with some mixing occurring only by molecular diffusion. This fluid system has the
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FIG. 1. Top view schematic of the experimental setup. Two syringe pumps push the two fluids at a controlled rate. Water is
in inlet pump 1 and the viscous sucrose solution is in inlet pump 2. The volume fraction (of fluid 2) into the test T-junction
is given as �in = Q2/(Q1 + Q2). Fluid is collected from the branch and the volume fraction in the outlet is measured. The
outlet pump can be switched to the branch and the experiment repeated. Gravity points into the page.

feature that it is easily controlled and modeled, yet has the key ingredients for complex network
flows.

In this paper we first use experiments and 3D Navier-Stokes simulations to explore how the two
fluids distribute at a single T-junction. While such phase separation functions have been extensively
measured for gas-liquid flows, to the best of our knowledge they have not been measured in this
miscible laminar two-fluid flow. We measure the phase separation at a single junction, find excellent
agreement with 3D Navier-Stokes simulations, and propose a simple parametric phase separation
function. Once the behavior of a single junction is characterized, we construct a simple network
model. We find that the phase separation which occurs at a T-junction can lead to multiple stable
equilibria in even the simplest of networks. Our experiments confirm these predictions.

II. PHASE SEPARATION FUNCTIONS

The first step toward predicting the distribution of phases in a network is to understand the
phase separation at a single bifurcation. In microvascular flow, these “plasma skimming” functions
have received much attention and are a crucial component of network models. In gas-liquid flow,
these phase separation functions have also been extensively measured. In order to make predictions
on networks with our fluid system, these phase separation functions must first be measured. Our
focus is on laminar stratified flow of Newtonian fluids with different viscosity and density. To the
best of our knowledge these phase separation functions have not been measured for this system. The
functions are complicated because they depend upon many parameters in the system. In the first part
of this paper, we seek to explore the phase separation at a single T-junction both experimentally and
computationally.

A. Experimental system

A top view schematic of our experimental setup is shown in Figure 1; in this figure gravity
points into the page. Two syringe pumps (New Era Pump Systems NE-300) supply our source fluids
at a controlled and steady flow rate. Inlet pump 1 contains water (which will be denoted as fluid
1) and inlet pump 2 contains a controlled aqueous sucrose solution (fluid 2). The mass fraction
of sucrose (Sigma Aldrich) in fluid 2 is precisely measured with an analytical balance when the
solution is prepared. The viscosity and density of the inlet sucrose solution are taken from the CRC
Handbook from the known mass fraction.33 Circular tubing (1.6 mm inner diameter) from the two
inlet pumps meet at the inlet junction where the density difference of the two fluids is sufficient
to create a strongly stratified flow. The dense sucrose solution is observed to sit on the lower half
of the tube and the water sits on top. Food coloring is added to both fluids for basic visualization.
The inlet tube then approaches the test T-junction which is held level with respect to gravity (see
Figure 1). In the schematic we adopt the nomenclature for the two outlets as “branch” and “run,”
terms we will refer to throughout the paper. The flow rate of one of the outlets is controlled with
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the outlet syringe pump set in withdraw mode (Harvard Apparatus, ml pump module). The other
outlet is held at atmospheric pressure and its flow rate is known from the difference of the pump
flow rates. The fluid leaving the system from the open outlet is collected. The collected fluid can
then be measured with a Brixometer (Ataga, PAL-1) to determine the total amount of sucrose in
the outlet fluid. The volume fraction of fluid 2 in the outlet, �, can then be determined from this
measurement and knowledge of fluid contents of the inlet pumps. The volume fraction is defined as
� = V2/(V1 + V2), where V is the volume and the subscript refers to which fluid.

The test T-junction has a circular cross section of 1.1 mm inner diameter. The entrance and exits
to the T junction are long relative to this diameter; connecting lengths are approximately 100 mm.
Flow rates for the incoming fluid are varied through the experiments, but typical rates are on the
order of 1 ml/min which corresponds to fluid velocities in the T-junctions of 17 mm/s. The Reynolds
number for water flow at these velocities is Re = 19. The Reynolds number of the sucrose solution
of higher viscosity is reduced. The syringe pumps use glass syringes with a capacity of either 50
or 20 ml. All pumps were periodically tested and calibrated for their ability to deliver a steady and
correct flow rate.

In a typical experimental run, we wish to measure the volume fraction of fluid 2 in the two
outlets as a function of the outlet flow fraction. The outlet flow fraction is defined as the flow in the
branch divided by the total inlet flow; Qbr/Qin. We set the inlet pumps to a constant flow rate and
fixed ratio to control the inlet volume fraction, �in = Q2/Qin, and total flow rate Qin. We then vary
the outlet withdrawal flow rate of the pump attached to the run. After allowing sufficient time for
the system to reach steady state, we collect the fluid from the branch, typically collecting at least
2 ml of fluid. The outlet solution is then well mixed in the collecting container and two successive
samples are pipetted and measured with the Brixometer; all readings of the same collection sample
fell within the stated error of the device (0.2% error in mass fraction). We then change the flow rate
of the outlet pump to collect data over a range of outlet flow fractions Qbr/Qin. After each change in
the flow rate, we let the system come to equilibrium by waiting several flow through times for the
network.

With the outlet pump placed on the run, once Qbr/Qin becomes less than about 0.1 we cannot
collect a sufficient amount of fluid from the branch before the input syringes empty, thus we end the
experiment. We move the pump from the run to the branch and repeat the procedure, collecting and
measuring fluid from the run while controlling the flow in the branch. In this configuration we can
acquire data when the flow in the branch is small, but have difficulty obtaining data when Qbr/Qin

> 0.9 since too little fluid accumulates from the run before the inlet syringes empty.
While we could collect the contents of the branch (run) and determine the contents of the run

(branch) from conservation, we avoid this approach. We measure the contents of the branch and the
run in independent experiments and then confirm that the inferred values from conservation are in
agreement with the measured values. It should be noted that the inferred values of the branch contents
(when the run is measured) are unreliable when Qbr/Qin > 0.9. The sensitivity in the calculation is
such that a small error in the measured value leads to a large error in the inferred value, thus the
measured values are to be trusted over the inferred. We repeat each measured data point three times.
Each of these three measurements is a unique experiment; new inlet fluids are mixed, all syringes
are cleaned, and a new identical network is constructed from new materials and components.

B. Simulation

We conducted simulations of the system using a commercial 3D finite element code, Comsol
Multiphysics. The simulations solve the steady state, incompressible Navier-Stokes equations for
conservation of momentum

ρu · ∇u = −∇ P + ρg + ∇ · (
μ

(∇u + ∇uT
))

(1)

and mass

∇ · u = 0. (2)
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FIG. 2. (a) Simulation geometry. The color (in online version) represents the concentration field. The two fluids are brought
in vertically with respect to gravity so that the flow will be pre-stratified in the inlet. (b) Sample velocity profiles for stratified
flow as a function of radial distance from the center of the tube. Profiles are shown for viscosity ratios of 5 (dashed-dotted
black curve), 15 (dashed red curve), and 100 (solid blue curve). For each case the inlet volume fraction is �in = 0.5. Notice
that the location of the interface between the two fluids moves toward the wall as the viscosity ratio increases. The radial
coordinate in the plot is taken along a vertical line through the center of the tube in the direction of gravity. For a viscosity
ratio of 1 we would have the classic parabolic velocity profile.

We solve the convection-diffusion of a dilute species which represents the relative concentration of
sucrose,

u · ∇c = ∇ · (D∇c) . (3)

Here, u is the velocity vector, ρ is the density, μ is the viscosity, c is the concentration, and D is
the diffusivity. The concentration equation couples back to the momentum equation through the
dependence of the density and viscosity on concentration. We approximate the fluid viscosity as

μ

μ1
=

(
μ2

μ1

)(c2+c)/2

, (4)

where μ1 is the viscosity of water (fluid 1) and μ2 is the viscosity of the inlet sucrose solution (fluid
2). The power of (c2 + c)/2 was empirically fit to match the experimental data with reasonable
accuracy.33 Our definition of concentration, c, is normalized by the concentration in fluid 2, thus the
concentration in our model varies between 0 and 1. The density is assumed to depend linearly on
concentration, ρ = ρ1 + (ρ2 − ρ1)c, where ρ1 and ρ2 are the densities of fluid 1 and 2, respectively.
The diffusivity is assumed to vary inversely with the viscosity as D = D1μ1/μ. Textbook values for
the diffusivity of sucrose in water at room temperature are around D1 = 5 × 10−10 m2/s.

The simulation domain, shown in Figure 2(a), consists of two inlet tubes which are aligned
with respect to gravity. The inlet concentration is 0 in the upper inlet (pump 1) and 1 in the lower
inlet (pump 2); both inlet flow rates are controlled. The two fluids meet and merge in a single tube,
approach the test T junction and then proceed to the outlets. The stratified flow in the approach
to the test T is enforced by aligning the inlet tubes with gravity. In the experiment the entrance is
configured as shown in Figure 1, however, the long entrance length ensures fully stratified flow at the
T-junction. In the computation it is not practical to have a long entrance length before the T-junction.
The outlet flow rate is controlled on the branch through the boundary condition while the outlet at
the run is allowed to freely flow out to a reservoir. The simulation was run on progressively finer
grids to ensure adequate convergence in the solution.

We make the equations dimensionless by using the pipe diameter, d, as the length scale, and the
total input flow rate divided by the area of the pipe as the velocity scale, U0. Under this scaling the
equations become

(1 + βc)u · ∇u = −∇ P + Frβcẑ + 1

Re
∇ ·

(
μ̃(c2+c)/2

(∇u + ∇uT
))

, (5)
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∇ · u = 0, (6)

u · ∇c = 1

ReSc
∇ ·

(
μ̃−(c2+c)/2∇c

)
. (7)

There are six dimensionless parameters from the flow model: the Reynolds number Re = ρ1U0d
μ1

;

the Froude number Fr = gd/U 2
0 ; the viscosity ratio μ̃ = μ2/μ1; the inlet volume fraction �in; the

Schmidt number Sc = μ1/ρ1D1; and the density difference ratio β = (ρ2 − ρ1)/ρ1. The geometry
provides the ratio of the diameter to the length of the entrance tube d/L as an additional parameter.
The Schmidt number is a material constant with a typical value of Sc = 2000 and is thus not a
free parameter that we can easily control. As with other flow problems where gravity is important,
the Reynolds number and Froude number are related in a way that they cannot be independently
varied.

The entrance length L only plays a role in determining how much diffusive mixing occurs in the
tube leading up to the T-junction. The time scale for diffusive mixing in the tubes is approximately
d2/D ∼ 2400 s. The flow through time for the entrance tube is L/U ∼ 6 s (the exact value depending
on the flow rate). Thus for all the cases presented in this paper the two phases have little time to
diffusively mix before entering the T-junction.

When two fluids of different viscosity flow inside a tube, it is important to realize that the
volume taken up inside the tube is not equal to the ratio of the flow rates. The low viscosity water
is squeezed to the top of the tube where it has a higher velocity than the viscous sucrose solution.
Sample velocity profiles in the tubes are shown in Figure 2(b). Further, we must also ask whether
these laminar velocity profiles are stable. The stability of stratified flow of two fluids different
viscosity has been widely studied due to its industrial relevance. It has been demonstrated that
viscosity stratified Poiseuille flows can be unstable even in the low Reynolds number and Stokes
flow regime.34, 35 In our work, we have strong buoyancy effects which keep the flow stably stratified.
In all experiments we observe that the interface between the two fluids remains sharp and free of
any obvious instability.

C. Results

In Figure 3 we show a comparison of the experimental measurements and 3D simulations at
four different total inlet flow rates. In each sub-figure we plot the volume fraction of the fluid in the
branch and in the run, divided by the inlet volume fraction as we vary the flow ratio, Qbr/Qin. For all
cases the inlet volume fraction is held fixed at �in = 0.5 and μ̃ = 15, but the overall inlet flow rate is
varied. If there were no phase separation effect, then each plot would show unity for all values of the
flow fraction. However, we see significant phase separation which depends strongly on the overall
flow rate or inlet Reynolds number. Each point represents the average of three independent trials and
the error bars represent the spread in these trails. The triangles represent the inferred values from the
measurements of the other outlet. Across the range of experiments the measured and inferred values
are in excellent agreement, giving us high confidence in the experimental procedure.

In general, we find good agreement between the simulation and the experiment. The agreement
is best at low flow rate while at higher flow the simulation under-predicts the experimental data.
However, the predicted trend is in excellent agreement for a nonlinear flow problem. Since the
amount of separation depends sensitively on the total flow rate, it is clear that inertial nonlinearity
in the Navier-Stokes equations is the origin of the phase separation. In dimensionless terms, each
experiment shown in Figure 3 has a different Reynolds number and Froude number.

The mechanism for the splitting is an inertial, or Reynolds number, effect—as the fluid mixture
approaches the T, the fast moving water tends to overshoot the 90◦ bend and continues onward along
the run. The run always contains more water than the inlet fluid. We use simulation to make sure that
the phase separation’s dependence is not due to changes in the Froude number. We ran simulations
with gravity turned off and get very similar results as those presented in Figure 3. The results are
relatively insensitive to the Froude number.
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FIG. 3. Comparison of experiment and simulation for the phase splitting at a T junction as a function of the overall flow rate.
Each inlet pump has a flow rate of (a) 0.5 ml/min, (b) 1 ml/min, (c) 2 ml/min, and (d) 5 ml/min. Each data point represents the
mean of six measurements (2 independent measurements on 3 independent but identical networks). The error bars represent
the maximum and minimum values measured. The composition of the branch and the run are measured separately, though this
measurement is redundant. The triangles represent the mean value in the branch (run) as calculated from the measurements in
the run (branch)—the data are consistent. The lighter gray data points (red online) near the dashed curve are measured in the
run and the darker gray data points (blue online) near the solid curve are measured in the branch. The solid line is the finite
element simulation from the branch and the dashed line is the simulation from the run. The sucrose solution coming from
pump 2 is a 50% mass fraction solution which has a viscosity of μ̃ = 15. The Reynolds number in the T-junction (based on the
water viscosity) for each case is approximately (a) 19, (b) 38, (c) 76, and (d) 190. The Froude number in each case is (a) 35,
(b) 8.7, (c) 2.2, and (d) 0.35. The other dimensionless parameters are Sc = 2000 and β = 0.23.

The data near the end points (when Qbr/Qin is close to zero or one) are difficult to resolve both
for the simulation and the experiment. For example, when the flow in the branch approaches zero,
the volume fraction in the run must approach that of the inlet. The branch can have essentially any
volume fraction and leave the run unchanged. In the experiment, we cannot collect enough fluid at
these conditions before the syringe pump empties, thus the contents cannot be measured directly.
We also cannot calculate the contents of the branch from the contents of the run, unless we know the
run contents with extreme precision—the error gets amplified in this regime. Computationally, the
flow and flux of concentration in the branch are both very close to zero near this point. Therefore,
the ratio of the two is susceptible to a small amount of error in the overall numerical solution. With
the current arrangement, we cannot confidently say what the concentration in the branch (run) is
as the branch flow rate approaches zero (one). The simulation is well behaved in the range 0.05
< Qbr/Qin < 0.95. Beyond this range, while the numerical solution returns a well converged solution,
the calculation of the volume fraction in the low flow outlet is not well behaved—exactly as in the
experiments.

In addition to varying the inlet flow rate, we also explored how the phase separation depends
upon other parameters in the system. In Figure 4 we hold the outlet flow fraction fixed at 0.5 (i.e.,
Qbr = Qrun) and vary both the total flow and the viscosity contrast. The inlet volume fraction is �in
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FIG. 4. Comparison of experiment and simulation. Here the two outlet flows are fixed to always be equal; Qbr/Qin = 0.5. In
(a) we only vary the total flow rate holding the viscosity ratio at μ̃ = 15. In (b) we hold the total flow constant at 4 ml/min
(Re = 76Fr = 2.2) and vary the viscosity ratio. In all cases Sc = 2000 and β = 0.23. The symbols are the same as in Figure 3.

= 0.5. In Figure 4(a) we vary the overall flow rate while in Figure 4(b) we vary the viscosity ratio.
As before we measure the contents of the branch and the run separately, using three separate trials
for each data point. The Comsol simulation tends to under-predict the phase separation, however the
trend in both cases is well-captured.

In Figure 5 we show the phase separation as we change the inlet volume fraction. In this case
we hold the total flow at 4 ml/min and show results for �in = 0.7 and �in = 0.3. The viscosity ratio
between the two fluids is μ̃ = 15. We find that the phase separation depends quite strongly on the
incoming volume fraction, and that the separation is quite dramatic when the volume fraction of
fluid 2 is low.

In general we see find very good agreement between the experiment and simulations. Typically,
the simulation under-predicts the amount of phase separation, however all trends seem to be well
captured by the finite element simulation. The simulation, therefore, is a useful tool for these flows.
We can use the simulation to predict phase separation functions over a much wider range of parameter
space, much more quickly than we can experimentally. Given the good agreement we find here, we
have confidence that predicted separation functions will be accurate. To the best of our knowledge,
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FIG. 5. Comparison of experiment and simulation for the phase splitting at a T junction. In both experiments the total inlet
flow rate is 4 ml/min. In (a) the sucrose inlet is 2.8 and the water is 1.2 ml/min, �in = 0.7. In (b) the sucrose is 1.2 and
the water is 2.8 ml/min, �in = 0.3. The sucrose solution in the inlet pump has a viscosity 15 times that of water. The other
dimensionless parameters are Re = 76, Fr = 2.2, β = 0.23, and Sc = 2000. The symbols are the same as in Figure 3.
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FIG. 6. Comparison of experimental data for the phase splitting at a T junction compared to the simple 1 parameter model
over a range of conditions. The points are experimental data (error bars removed for clarity) and the lines are from the fit
function—solid lines for the branch and dashed lines for the run. Color is shown online version. All experimental data are
the same as shown in previous figures. The conditions denoted in the figure are: (i) black lines for α = 0.6 and black triangles
for 2 ml/min total flow with �in = 0.5; (ii) red lines for α = 1.1 and red pluses for 4 ml/min total flow with �in = 0.5;
(iii) blue lines for α = 1.5 and blue circles for 10 ml/min total flow with �in = 0.5; (iv) magenta lines for α = 2.2 and
magenta diamonds for 4 ml/min total flow with �in = 0.3. In all cases the sucrose solution in the inlet pump has a viscosity
15 times that of water.

these measurements and simulations represent the first in this geometry with laminar, stratified,
miscible flow.

As we will explain in Sec. III, these measured separation functions are a key ingredient in
network models. The separation function must be applied at each node within the network. In order
to quickly explore ramifications of phase separation for network flows, we empirically develop a
simple one-parameter model function for �br and �run. We assume

�br

�in
=

(
1 + α

(
1 − Qbr

Qin

)
Qbr

Qin

)

and that �run is found from conservation

�run

�in
=

(
1 − α

(
Qbr

Qin

)2
)

.

If the control parameter α is greater than 1 we use a piecewise approximation where �run = 0 in
the regions where the volume fraction would be negative. If �run = 0, then �br is computed from
conservation. The construction of this simple function, while far from precise captures the basic
trends of our experimental data. This empirical function allows us to scan parameter space easily
in making network predictions. With this simple function, α is related to the strength of the phase
separation. An example of the fit function compared to experimental data is shown in Figure 6.

We emphasize that this simple function and the control parameter α are empirically defined and
only done for convenience in the network simulations. The parameter α depends the inlet volume
fraction, the inlet Reynolds number, and the viscosity contrast. The data fit with this function in
Figure 6 is not sufficient in quantity to create a fit for α over all of the parameter space. We only use
the empirical phase separation function to provide some insight into the network behavior through
a simple model.

III. NETWORK FLOWS

Now that the phase distribution functions are known for a single junction, we can begin to use
these functions to predict how the phases would distribute within a network. In this paper we use one
of the simplest networks possible, Figure 7, which we demonstrated in previous work had bistability
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FIG. 7. Top view schematic of the network as constructed in experiment. The results are sensitive to whether the connector
between the two outlets is the run (as configured here) or the branch of the T-junction.

when the two inlets (Qin,1 and Qin,2) were different fluids and the viscosity contrast was sufficiently
strong.16 In this work we consider the same network, only the two inlets to the network are the
stratified 2-component flow rather than single phase fluids. We find a different type of bistability
which originates from the phase distribution function at the single T-junction, occurring when the
two inlets to the network are identical fluid mixtures. In this setup, we use four inlet pumps to create
a controlled stratified flow as the two inlets to the network. The inlet volume fractions to the network
are defined by �in,1 = Q2/(Q1 + Q2) and �in,2 = Q4/(Q3 + Q4). The total flow into the network is
Qtot = Qin,1 + Qin,2.

A. Analysis

The pressure drop across any length of tube can be described by

�P = Q R,

where R is the hydraulic resistance of the tube, �P is the pressure drop, and Q is the volumetric
flow rate. The resistance for a single phase laminar flow is simply Poiseuille’s Law, R = 128μL/πd4

where L and d are the length and diameter of the tube, respectively. For our two-fluid system the
viscosity in Poiseuille’s law is replaced by an effective viscosity. The effective viscosity is calculated
from the full velocity profile of the two fluids in contact with each other in the tube, as in Figure 2(b).
In the flow regime of our network, the resistance behavior is similar to what one would calculate for
immiscible fluids in fully developed flow.36 The setup for the calculation of the effective viscosity
of immiscible fluids is shown in Figure 8(a). Since the flow is fully developed along the axial length
of the tube, we solve for the velocity across a cross section of tube assuming a horizontal interface
separating the two fluids. Since the velocity only varies across the cross section the Navier-Stokes
equations simplify dramatically as illustrated in the schematic. Once the velocity profile is computed
for a fixed interface location, we can easily calculate the overall hydraulic resistance and the volume
fraction of the two flows.

Since our system has miscible fluids, we can solve the same problem only for an interface which
has been smeared by diffusion. When diffusion exists in the system, the effective resistance of the
flow in the tube depends on how long the two fluids have been in contact with each other in the tube.
For long and narrow tubes, there would be sufficient time for molecular diffusion and the behavior
limits to the fully mixed case. For short tubes, we would limit to the immiscible result. The relevant
dimensionless parameter would compare the time scale for diffusion across the cross section of tube
relative to the transit time through the tube; i.e., ud2/DL = ReSc d

L . At the lower Reynolds numbers
of our experiments this parameter is approximately 400, meaning the time scale for diffusion is 400
times slower than the transport time through the tubes. Example curves for the effective viscosity
(based on miscible fluids) are shown in Figure 8, which fall very close to the immiscible result (not
shown). The calculation of the effective viscosity and the effect of diffusion on the resistance in a
single tube was discussed in more detail in our previous work.16

Once the effective viscosity as a function of the volume fraction is known, we can relate the
pressure drop and flow in each of the tubes. For our network, the flow is defined as positive for
flowing out at exits A and B and positive flow in C is defined from left to right. With this convention
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FIG. 8. (a) Schematic and formulation for calculating the effective viscosity of miscible stratified flow in a tube. We show
a cross section of the tube where u is the axial velocity coming out of the page. The boundary conditions are no-slip at the
wall and constant stress at the interface between the two fluids. (b) Effective viscosity for miscible stratified laminar flow of
two fluids in a tube as a function of volume fraction of the more viscous fluid in the mixture. Sample curves are shown for
viscosity contrast of 5, 10, and 15. The normalized diffusion time measured in units of D/d2 was 0.0025; the final result is
very close to the immiscible case.

the pressure drops in the three tubes must satisfy

�PA = �PC + �PB .

Using flow conservation, we know that QA = Qin,1 − QC and QB = Qin,2 + QC. We can describe the
flow in tube C as

QC = Qin,1 RA − Qin,2 RB

RA + RB + RC
.

It is important to remember that the resistances of each tube in the above expression depends upon
the volume fraction in the tube.

When the flow in C is positive then phase separation occurs at the T-junction on the left and thus
this phase separation determines the contents of tubes A and C. The volume fraction in the three
tubes follows,

�A = �br

(
Q A

Qin,1
, Rein,1,�in,1, μ̃in,1

)
, (8)

�C = �run

(
Q A

Qin,1
, Rein,1,�in,1, μ̃in,1

)
, (9)

�B = Qin,2�in,2 + QC�C

Q B
. (10)

When the flow in C is negative,

�B = �br

(
Q B

Qin,2
, Rein,2,�in,2, μ̃in,2

)
, (11)

�C = �run

(
Q B

Qin,2
, Rein,2,�in,2, μ̃in,2

)
, (12)

�A = Qin,1�in,1 − QC�C

Q A
. (13)

The functions �br and �run are the phase separation functions which come from either experiment,
3D simulation, or our empirical one-parameter model. These functions, as described in Sec. II,
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FIG. 9. (a) Predictions of the flow in tube C as a function of the ratio of flow in inlet 1 to the total flow rate Qin,1/(Qin,1

+ Qin,2) for values of α = 0, 0.5, 1, and 2 (blue, red, black, and magenta respectively). The viscosity contrast is fixed at
μ̃ = 150. (b) Predictions of the flow in tube C for different viscosity contrast of μ̃ = 1, 4, 20, and 150 (blue, red, black, and
magenta, respectively). The parameter for the phase separation function is α = 2. In both figures (a) and (b), the inlet volume
fraction is �in,1 = �in,2 = 0.5 and the lengths of all tubes in the network are the same.

depend upon the relative flow of the branch to the inlet, the Reynolds number, the inlet volume
fraction, and the viscosity contrast between the two fluids. Once the volume fraction in the tubes
is known, the effective viscosity of the network tubes is known from Figure 8. Given that the
phase separation functions and resistance are not simple analytical results, a simple result cannot
be derived. The problem is sufficiently defined to numerically find the volume fraction and flows
through the entire network for fixed inlet conditions. The above equations provide the relationship
for QC/Qtot as a function of Qin,1/Qtot.

Some sample predictions using the one-parameter model are shown in Figure 9 for an inlet
volume fraction of �in,1 = �in,2 = �in = 0.5 and a network where all tubes are equal lengths. In
Figure 9(a) we show the effect of variation in the one parameter in the phase separation function,
α, at a high viscosity contrast between the two fluids, μ̃ = 150. It is clear that if sufficiently strong
phase separation occurs then bistability in this simple network can emerge. For the curves α = 1 and
α = 2 there are three possible values of QC when Qin,1/Qtot = 0.5. The value at QC = 0 is not stable
and thus would not be observed in experiments. While bistability exists for α = 1, it is much more
extreme for larger values of α. In Figure 9(b), we show the effect of the viscosity contrast between
the two fluids in the system for a fixed value of α = 2. We see that the window of bistability grows
with the viscosity contrast. While these figures do not span all possible parameters, it is clear that
for bistability to emerge in these networks the phase separation and the viscosity contrast must both
be sufficiently strong.

We can easily derive a criterion for the emergence of bistability in this network flow. We can
take the formulation for the network and analyze the derivative of the curve ∂QC/∂Qin,1 around the
equilibrium point when QC = 0. At this trivial equilibrium point Qin,1 = QA and Qin,2 = QB. Looking
at Figure 10, we see bistability emerge when the slope at this point becomes vertical. Considering
the special case where the two inlet pumps to the network have identical fluid mixtures, identical
inlet volume fractions, and identical tube diameters (i.e., �in,1 = �in,2 = �in and μin,1 = μin,2

= μin), we obtain the slope of the flow curve to be,

∂ QC

∂ Qin,1
= 1

1 + μC (QC =0)
μin

LC
L B+L A

− 1
μin

∂μ

∂�

∣∣∣
�in

(�in − �C (QC = 0))
. (14)

Here, μC and �C are the viscosity and volume fraction in C when QC = 0. The value of �C(QC

= 0) comes from the phase separation function. For the network configuration shown in Figure 7,
tube C is the run of the T-junction.
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FIG. 10. (a) Flow in exit branch A of the network in Figure 7(b) determined from experiment and theory. Notice the region of
bistability around the state where the flow rates on the inlets are equal. Both inlets are a 30% sucrose and 70% water mixture
in stratified flow. The viscosity contrast between the sucrose solution in inlet pumps and water is 150. The inset shows the
network topology. The error bars on the light gray (red) experimental data points show the maximum and minimum value
recorded in three independent trials and the data points shows the mean. The dark gray (blue) data points and error bars were
taken on two of the trials where we proceeded from left to right along the flow curve. The black data points were from one
trial where we moved from right to left. In (b) we have the exact same setup, only the connection for the network is made by
the branches of the two inlet T-junctions—see the inset. In both figures the points are experimental data, the solid line is from
the theory, using the fit function with α = 2.2 and the dashed line is from the theory using the phase separation as predicted
from the Comsol simulation.

We can easily see that bistability would emerge when the denominator of Eq. (14) equals zero.
Without loss of generality, we assumed through our definitions that viscosity must increase with
volume fraction and thus, ∂μ

∂�
> 0. Since the tube lengths and viscosity must all be positive numbers,

Equation (14) tells us some general things about when bistability cannot exist. In the limit of no
phase separation, �C = �in, the denominator would always be positive and bistability could not
exist. Likewise, if the phase separation is such that �C(QC = 0) > �in, then bistability is also not
possible. If �C < �in then bistability is possible depending on the network geometry and viscosity
of the fluids. The criterion for the onset of bistability can be stated as

1

μin

∂μ

∂�

∣∣∣∣
�in

=
(

1 + μC (QC =0)
μin

LC
L B+L A

�in − �C (QC = 0)

)
. (15)

To obtain better intuition about when this criterion is met, let us suppose that the effective viscosity
follows a simple law, μ = μ̃�, where μ̃ is the viscosity contrast between the two fluids in the system.

With this viscosity law, 1
μin

∂μ

∂�

∣∣∣
�in

= log(μ̃). Therefore, the required viscosity contrast between the

two fluids, μ̃, would be exponential in the right-hand side of Eq. (15). While our viscosity law is
different it has a similar functional form, thus a small change in the right-hand side will get magnified
by exponential behavior.

In the limit of LC � (LA + LB) the right-hand side of Eq. (15) would grow and thus bistability
would become very unlikely. In the limit when LC � (LA + LB) the criterion would simplify to

1

μin

∂μ

∂�

∣∣∣∣
�in

= 1

�in − �C (QC = 0)
.

This value would represent the minimum viscosity contrast needed to observe bistability in any
arbitrary network.

We can test Eq. (15) against Figure 9(b) where �in = 0.5. In this figure LA = LB = LC and
the phase separation is strong such that �C(QC = 0) = 0. For these conditions and our stratified
viscosity law, solving our criterion numerically (there is no analytical expression) would provide a
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critical viscosity contrast of μ̃ = 26. In Figure 9(b) we show a curve for μ̃ = 20, and the slope is
nearly vertical, though if we zoom in we find that it is still in the positive direction.

B. Experiment

A schematic of the experimental network setup is shown in Figure 7. We use four inlet pumps
to create a controlled stratified flow as the two inlets to the network. In order to easily monitor the
flow rate in the exit branches of the network, we simply leave exits A and B open to atmospheric
pressure. With this simple setup we collect the fluid from both outlets over a fixed time period in
order to measure the exit flow rates, QA and QB. The exit flows are collected in a disposable test tube
and the fluid mass is weighed on an analytical balance.

In the network experiments, we used the same T-junction geometry described in Sec. II. However,
in these experiments after the T-junction the tubes A, B, and C were narrowed down to tubing of
0.5 mm inner diameter. This decrease in diameter was done to increase the hydraulic resistance
between the network connections. Since the outlets A and B were held open at atmospheric pressure,
we want the hydraulic resistance of the tubes to significantly dominate over surface tension effects
due to dripping at the exits or hydrostatic pressure differences due to A and B not being at precisely
the same height. In all experiments reported here the nominal hydraulic resistance of A, B, and C
were the same.

In these experiments the pumps on the left and right side are always kept in the same proportion
such that the volume fraction in the two inlets are constant at �in,1 = �in,2. In the experiment the
pumps on inlet 1 in Figure 7 are held at a constant flow rate of 2 ml/min. The total flow rate in inlet
2 is varied between 8 and 0.5 ml/min in order to change the inlet network flow ratio, Qin,1/Qtot. Each
experimental data point is repeated in three independent trials where new networks are constructed
and new solutions mixed.

We used our model phase separation function to help guide us to regimes where strong bistability
would be expected. We determined from our experiments that strong phase separation occurs when
the inlet volume fraction is 30%, see Figure 6(a). We also determined from our network analysis
that a viscosity contrast of 150 would give us a strong window of bistability in the network;
Figure 9(b). Since we found in earlier sections that the amount of phase separation is not very
sensitive to the viscosity contrast, we assume that the fit value of α = 2.2 that was found in Figure
6(a) for a viscosity contrast of 15 is approximately equivalent to that at a contrast of 150. We use the
fit function with α = 2.2 in our network prediction.

C. Results

The predictions of the network model compared to our experiments are shown in Figure 10(a).
We show the prediction using the simple phase separation fit function; shown as the solid line.
To further validate our predictions, we also used our finite element simulation at the experimental
parameter values and get the predicted phase separation function as well (the result is very similar
to Figure 5(b)). The network prediction based on the phase separation function calculated using the
3D finite element code is shown as the dashed line. A clear window of bistability exists and the
behavior is quite remarkable. If we slowly adjust the incoming flow rates around the point where Qin,1

= Qin,2 then the flow in the outlet undergoes a dramatic jump when we pass the transition point. The
agreement between experiment and theory is excellent. Note that the window of bistability predicted
by the model using the phase separation which came from the finite element simulation is not as
strong as we find experimentally. This result is consistent with what we found in an earlier section
where the finite element simulation typically under-predicts the amount of phase separation seen in
experiment.

In the experiment the pumps on inlet 1 in Figure 7 are held at a constant flow rate of 2 ml/min.
When the system is in a state such that the flow in C is positive (generally Qin,1/Qtot > 0.5) then
phase separation only occurs at the T-junction on inlet 1. Since this flow rate is constant, we expect
a single value of α to suffice for describing the behavior. When the flow is in a state where the
flow in branch C is negative (generally Qin,1/Qtot < 0.5) then phase separation only occurs at the
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T-junction between branches B and C. In order to span values of Qin,1/Qtot, the pumps on inlet 2
are varied from an inlet flow rate of 8 to 0.5 ml/min in the experiment. Since the phase separation
function is sensitive to the total flow rate, then the value of α would be expected to be variable.
The experimental data show an asymmetry about Qin,1/Qtot = 0.5 which is not present in the simple
model which assumes constant phase separation behavior. Despite these differences, the agreement
between the data and the prediction is excellent. Note the phase separation function calculated with
the 3D finite element simulation was run at a constant total flow rate of 4 ml/min to approximately
correspond to the average total flow in the network across the range of parameters.

Another interesting feature of this system is that if we keep the same basic network but re-
configure the system such that tube C in the network is the branch of both inlet T-junctions rather
than the run, the window of bistability disappears completely. These data and the predictions are
shown in Figure 10(b). The experimental data are consistent with the model. Again the data show
an asymmetry about Qin,1/Qtot which is not present in the model due to our assumption of constant
phase separation for all inlet flow rates.

An interesting feature of Figure 10(b), is that both the data and the prediction using the phase
separation from the finite element simulation show a flattening of the slope around the equilibrium
point, QC = 0, that is not seen with the simple fit function. The reason is that the fit function
assumes that the volume fraction in the branch goes to �in when the flow in the branch is zero;
i.e., �br(Qbr = 0) = �in = 0.3. This assumption is made to keep the fit function to one adjustable
parameter, the assumption is not based on data or some physical mechanism. As explained in
Sec. II, the experimental setup does not allow us to accurately determine the branch volume fraction
at this point. However, the phase separation functions computed by the finite element simulations
show that the volume fraction in the branch as the flow in the branch goes to zero is likely somewhat
less than the inlet volume fraction. For the case here, the finite element simulation predicts �br(Qbr

= 0) ≈ 0.18. Since the flow in tube C is close to zero when Qin,1/Qtot ≈ 0.5, it is the phase separation
behavior when the branch flow is close to zero which is important.

What is interesting about the dashed curves in Figure 10 is that the prediction is based entirely
on first principles and simulation. The complex phase separation functions and effective viscosity
laws are calculated with a Navier-Stokes simulation. The dashed curves in these figures have no fit
parameters or assumptions inherent in them. The solid curve is based on a simple one parameter
phase separation model that is convenient for exploring behavior and parameter space, but it should
not be taken as more than a fit function.

Finally, the criterion in Eq. (15) provides a simple explanation as to why bistability is seen
in one network configuration but not the other. In the configuration of the network shown in
Figure 10(a), tube C is the run of the inlet T-junctions and thus �C(QC = 0) ≈ 0. Under these
conditions bistability is possible when μ̃ > 50; our viscosity contrast of 150 exceeds the minimum
value. For the configuration where the network is connected such that tube C is the branch of the T-
junction, �C(QC = 0) = �in if we use the fit function; bistability is not possible under this condition.
If we use the value of �C(QC = 0) = 0.18 which is computed in the finite element simulation, then
the required viscosity contrast would be μ̃ > 5900.

IV. CONCLUSIONS

In this work, we have demonstrated that laminar flow of two miscible fluids of different viscosity
approaching a T-junction has significant phase separation. We measured phase distribution functions
for this system for the first time (to the best of our knowledge). We compared our experiments on
these phase distribution functions to 3D Navier-Stokes simulations and find excellent agreement.
We find that in the geometry used in this work that inertia was the mechanism behind the phase
separation. We described the phase separation as a function of the key parameters such as Reynolds
number and viscosity contrast between the two fluids.

Once such phase separation functions were known, we explored the consequences for phase
distribution within a simple network. We find theoretically and experimentally that the unequal
separation of two phases at a single bifurcation can lead to multiple equilibrium states in a network.
We derive a criterion for the existence of multiple states and found this criterion to explain the
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experimentally observed behavior. The phase separation functions depend on the exact details of the
system; the fluids used and the geometry of the network bifurcation. However, the network results
are generic and could be applied to or found in different systems.
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