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Helical ribbons with pitch angles of either 11° or 54° self-assemble in a wide variety of quaternary
surfactant-phospholipid/fatty acid-sterol-water systems. By elastically deforming these helices, we ex-
amined their response to uniaxial forces. Under sufficient tension, a low pitch helix reversibly separates
into a straight domain with a pitch angle of 90° and a helical domain with a pitch angle of 16.5°. Using
a newly developed continuum elastic free energy model, we have shown that this phenomenon can be
understood as a first order mechanical phase transition.
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Self-assembled helical ribbons have been of increasing
interest due to their potential use in applications rang-
ing from drug delivery systems [1] to biological force
probes. In addition, helical ribbons have been shown to be
metastable intermediates in the process of cholesterol crys-
tallization in the native gallbladder bile, the latter leading
to the formation of gallstones [2,3]. In particular, Chung
et al. found that in several model bile systems the helical
ribbons formed had two distinctive pitch angles, 11.1° =
0.5° and 53.7° += 0.8° [4]. Zastavker et al. then showed
that the formation of structures with these two distinct pitch
angles was not unique to model biles, but was a general
phenomenon of a variety of four-component systems com-
posed of a bile salt or nonionic detergent, a phosphatidyl-
choline or fatty acids, a steroid analog of cholesterol, and
water [5]. One of the new systems we choose to focus on
is the chemically defined lipid concentrate (CDLC) from
Gibco/BRL. In this commercially available system, the
helical ribbons self-assemble with high yields and with
high reproducibility.

The geometry of a helical ribbon is characterized by the
ribbon width (w), thickness (¢), contour length (s), helix
radius (R), and pitch angle (/). We may also define the
helix axial length as £ = ssin(iy). We will define Ry, so,
{0, and iy to be, respectively, the equilibrium radius, con-
tour length, axial length, and pitch angle of a helix free
from external stress. The low pitch helices in CDLC typi-
cally have an Ry between 5 and 50 pm, an sy between 150
and 1500 pum, an €y between 30 and 300 um, and a w
between 1 and 20 pwm. In addition, we estimate the thick-
ness to be 10—100 nm.

The helices are observed using an inverted microscope
(Diaphot-TMD, Nikon) with phase contrast optics con-
nected to a CCD camera (DXC-970MD, Sony). The im-
ages are recorded by a SVHS VCR (AG-1960, Panasonic)
and then captured using the frame grabber on a Power
Macintosh. The public domain NIH-Image software is
then used to determine the helix geometric properties. We
use Devcon 5-Minute Epoxy® to tether one end of a helix
to a fixed rigid rod and the other to a movable cantilever or
a rod attached to a piezoelectric micromanipulator (PCS-
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5000, Burleigh) which gives us precise control over the
helix extension and compression.

In order to measure the force versus extension relation-
ship, we use a nanofabricated silicon-nitride cantilever
with an elastic constant of (5.0 = 0.8) X 107> Nm~! [6].
By simultaneously observing the cantilever deflection and
the extension of the helix, we can determine the helix
spring constant. Figure 1 shows a typical plot of the can-
tilever force versus helix extension. The spring constant
of this particular helix (Ry = 19 pum, so = 803 um, and
w =12 um) is (4.8 + 0.9) X 10°®* Nm~!. For com-
parison, the spring constant of a lambda phage double-
stranded DNA molecule is approximately 1 order of
magnitude larger than this [7]. To within the uncertainty
of the position measurements, our helix shows completely
reversible and linear behavior.

As the external force is increased, the helix behaves
like a conventional spring until the pitch angle reaches a
value in the range of 16.5° to 25°. In this range a helix
is mechanically metastable and, upon nucleation, the helix
separates into two domains, one straight (¢, = 90°) and
the other helical (¢, = 16.5° = 1.3°). These are con-
nected by a crossover region whose length is typically on
the order of Ry. The twist is relaxed through the condition
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FIG. 1. Typical graph of cantilever force versus helix exten-
sion. The slope of the linear curve fit (4.8 X 107°) is the spring
constant of this helix in Nm™!.
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that our bond generates no torque on the system, allow-
ing the helix to freely translate laterally along the epoxy’s
surface. Interestingly, like i, the pitch angle of the heli-
cal domain (iy,) is always the same regardless of the helix
bulk geometry. A particular pulling sequence in one of the
experiments is shown in Fig. 2.

The separation phenomenon, which occurs for all low
pitch helices in CDLC, is perfectly reversible. Even if we
increase the external force until a ribbon is torn apart while
in a phase-separated state, both sections then relax to form
helical segments of the same pitch angle and radius as the
original complete helix. Together, all of these observations
suggest that low pitch helices in CDLC undergo a first
order phase transition where the pitch angle is the order
parameter. This type of reversible tension-induced confor-
mation change is analogous to the “stem-flower” transition
observed in collapsed linear polymer systems [8], though
the physical basis for the chain’s transition is quite differ-
ent from that of our system.

To formulate a description of this phase-separation phe-
nomenon, we will consider the system to be entirely elas-
tomechanical in nature. When free in solution, a ribbon
is described by an internal elastic potential energy F =
F(R,¢,s). We will adopt the common nomenclature and
henceforth refer to this as a free energy. To incorporate
the effects of an externally applied uniaxial tension (J),
we may define the total energy of the system to be given
by W = F — J£. (We have not included here the effects
of an external torque in W because in our experiments no
torque is applied.) Since the total contour length of the
helix remains fixed, the equilibrium state of the system is
found by minimizing W with respect to R and €. This
minimization results in the conditions that at equilibrium
(0F /0€)sg = J) and (0F /dR)s4 = 0. The latter condi-
tion provides an expression for R in terms of € and s, al-
lowing R to be eliminated as an independent variable in
our theory.

To describe the equilibrium of the phase-separated he-
lix, we must consider the case when the total contour
length is fixed but portions of it may be exchanged be-
tween regions of different pitch angles. The total W, given
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(a) A low pitch helix free from external force attached

FIG. 2.
to a glass rod at one end and surrounded by other free low pitch
helices in solution, (b) the same helix attached at both ends and
slightly extended, and (c) the helix extended beyond 16.5° and
allowed to come to equilibrium with respect to the straightening
transition (the helix ends are off screen).
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by Wit = W(ss) + W(sy) where s, = 59 — 55, must be
stable under a redistribution of the available contour length.
Applying this stability constraint results in the equilibrium
condition that (0F /ds)e g, = (0F /9sn)¢, g, This con-
dition on mass exchange is equivalent to the condition of
equal chemical potentials in the thermodynamic treatment
of two-phase equilibrium. In light of this analogy, we will
define & = (0F /ds)¢r to be an effective contour length
potential.

Turning to a specific form for F, the free energy derived
using an elastic continuum model is given by [9]

AU

where f() = Ko cos* (i) + 2Kg cos?() sin* () +
K, sin*().

The 1/R? term in Eq. (1) represents the elastic energy
cost associated with deforming the ribbon away from a flat
structure. The ribbon is modeled as a thin elastic material
restricting us to consider only pure bends with zero Gauss-
ian curvature. The local energy cost of such a deformation
scales like the elastic modulus times the square of the de-
formation [10]. Since we will consider the ribbon to be
anisotropic, there will in general be three phenomenologi-
cally determined elastic energy constants in our resulting
free energy that will represent combinations of the compo-
nents of the elastic modulus tensor. One coefficient (K, )
is associated with the bending of lines parallel to the con-
tour length, another (K, ) with bending of lines parallel to
the width, and a third (Kg) with an additional energy cost
due to coupling between the two primary deformations.

The 1/R term in Eq. (1) represents an intrinsic force
within the ribbon that causes it to spontaneously bend.
The choice of sign guarantees that the theory correctly pre-
dicts the experimental observation that only right-handed
helices have been observed in CDLC. Using the equa-
tion for R derived from (3F/dR)s¢ = 0, it is possible to
probe the form of this 1/R term by examining how the
radius changes when a helix is deformed. Figure 3 shows
our observation that there is a very weak dependence of
R on ¢ for small deformations. In fact, we find that R
is independent of §¢ = ¢ — ¢ to first order. This ob-
servation requires the 1/R term to be independent of the
pitch angle (i.e., the coefficient is simply a constant K).
Our isotropic form for this term, analogous to a difference
in surface tension between the ribbon’s top and bottom,
is in sharp contrast to previous theoretical models. Until
now, models assuming that the chirality of the underlying
molecules [11] or a spontaneous torsion of the edges [4]
was responsible for this energy advantage have useda 1/R
term proportional to sin(2¢). Both of these models lead
to a slope for the dashed line in Fig. 3 that is determined
entirely by ¥, and is seen to be clearly inconsistent with
our experimental findings.

Initially, the helices are free from external tension and
torque which leads to the conditions (3 F /9€¢), g = 0 and

F(y,R,s) = sw(
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FIG. 3. Plot of typical experimental results for the fractional

change in radius versus the change in pitch angle in radians
(squares). Comparison with the theoretical results using an
isotropic bending term (solid line) or using either a chiral or
a spontaneous torsion model (dashed line).

(0F /dR)s¢ = 0. Applying these conditions to Eq. (1) al-
lows iy and Ry to be determined as follows:

2 _ Ko — K,B
tan (lﬂo) = —K'y — K,B s (2)
2
Ry = ?f(lﬁo). (3)

In the continuum elastic model, K, K, and K, in f (i)
are all expected to scale like the cube of the ribbon thick-
ness [9,10]. Since K represents an isotropic surface force,
it should not depend on the ribbon thickness. Thus, our
theory suggests that the experimentally observed distribu-
tion in radii of helices with the same pitch angle is a re-
flection of a distribution in ribbon thickness.

For small deformations, the tension may be approxi-
mated by J)|(€, s0) = Kpring X (£ — €p), Where Kypring =
(0Jy/0€)s = (0°F /d{?). Using this definition, the spring
constant is found to be

w
Kspring =38 % (Ko — Kﬁ) . 4)
Examining Eq. (4), we note that, for the distribution of
helix dimensions in CDLC, the spring constants can be
expected to span more than 3 orders of magnitude. Using
Eq. (4) and the data shown in Fig. 1, we obtain for this
helix the value K, — Kg = (1.5 £ 0.6) X 1074 Nm.
It is important to reemphasize that this value depends on
the thickness of the ribbon, but it provides a good indica-
tion of its order of magnitude in CDLC.

We can now return to the description of phase separa-
tion. Using (0F /dR);¢ = 0 to eliminate R in favor of ¢
in Eq. (1), a reduced free energy may be written as F(v) =
[F(€/s)/s], where v = sin(¢f) = €/s. Using this defi-
nition, the tension and effective contour length potential
become J)(v) = (dF/dv) and a(v) = F(v) — vJy(v),
respectively. The conditions Jj(vy) = Jy(vs) and
a(vn) = iu(vs) define the equilibrium values vy, and wvs.
We may reexpress the condition for equilibrium with
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respect to material exchange as the following integral
equation:

f YAV = By X [ = ml, )

where the equality of the tensions is implicitly assumed.
Figure 4 shows a plot of the theoretical tension versus v
curve and the resulting equilibrium construction which is
equivalent to the equal area rule proposed by Maxwell for
thermodynamic two-phase equilibrium [12].

We must, however, take care when applying these equi-
librium conditions. At v = 1 the helix is straight and,
therefore, no matter what additional force is applied, the
pitch angle cannot increase. Thus the tension versus v
curve becomes vertical at v = 1 (see Fig. 4), automati-
cally satisfying the condition of equal tensions between
this point and vy. This fact provides the simple relation
vs = 1 which reduces Eq. (5) to a single equation for vy
that depends only on the ratios (K/K,) and (Kg/K,).
Therefore, our theory correctly predicts that the phase
separation is entirely a property of the ribbon’s underlying
elastomechanical nature and thus completely independent
of the helix bulk geometry.

Equations (2) and (5) provide two expressions for the
two dimensionless ratios of elastic energy constants. In
addition, Eq. (3) provides an expression for the third ratio
of phenomenological coefficients in F'. Using these equa-
tions, the values for the three ratios that do not depend
on the ribbon thickness or on the helix radius or contour
length are found to be

(Kg/K,) = 0.000 * 0.015,
(Ka/Ky) = 0.038 + 0.012, 6)
(K,Ro/K,) = 0.073 = 0.022.

These results have the following importance. First, the
coupling between the two deformation modes (Kg) is
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FIG. 4. Plot of a theoretical tension curve showing the equi-
librium construction appropriate to our system. The figure also
labels the free equilibrium value of » [y = sin(iyg) = 0.19], the
value of the order parameter in the helical phase (v, = 0.28),
and the limit of metastability with respect to the straightening
transition (v, = 0.42).

278101-3



VOLUME 87, NUMBER 27

PHYSICAL REVIEW LETTERS

31 DECEMBER 2001

equal to zero, restricting the symmetries that may exist
in the ribbon microscopic structure. Second, our theory
yields a value for the ribbon elastic anisotropy (K. /Ky)
which is far more physically reasonable than that predicted
by previous models [4,13]. This improvement stems from
the fact that in our model the elastic anisotropy is given
by tan?(), whereas in the previous models it scales as
tan*(iyo). Third, for the helix data shown in Fig. 1, the
equilibrium value of the spontaneous bending energy
per unit area (K,/R) is found to be 8 X 1075 Nm™!,
roughly 100 times less than the surface tension of a fatty
acid/water interface [14]. It is thus consistent to view this
bending energy as arising from a difference in surface
tension of the fatty acids which presumably coat the two
sides of the ribbon [3,9].

As noted in the discussion following Eq. (4), Kpring
provides a fourth equation for the coefficients, allowing
absolute values to be determined for any helix. There
is also a fifth relationship which allows for a check on
the self-consistency of our results. This relationship gives
the value of v, , the largest pitch angle which can be
achieved before a helix becomes mechanically unstable
(see Fig. 4). Using the values for the coefficient ratios
in Eq. (6), the theoretical value of v;  is found to be
0.42 = 0.06 corresponding to a pitch angle of 25°. Ex-
perimentally, we have measured v;  to be 0.41 = 0.04,
which is in excellent agreement with our model.

By elastically deforming self-assembled helices and
measuring their response, we have obtained information
on their elastic free energy. We have also discovered a
novel tension-induced straightening transition for these
structures. These experiments have led us to formulate
a new model free energy using continuum elastic theory
with an isotropic spontaneous bending term. With this
model, we have been able to self-consistently explain all
of the current experimental findings. By fitting measure-
ments of g, Ry, and ¢, to our theory, we have calculated
the three geometry independent ratios of the coefficients
in our model, and obtained their absolute values from the
measurement shown in Fig. 1. In the future, repeating
these experiments for helices formed in other systems will
provide a powerful check of whether the universality of
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o across a variety of chemical compositions is truly a
reflection of a common microscopic structure. Finally,
further characterization of the tethering process and of
Kpring may open up the possibility of using these struc-
tures as self-assembled biological force probes.
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