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Bistability in a simple fluid network due to viscosity contrast
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We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and
laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these
predictions in an experiment using two miscible fluids of different viscosity—sucrose solution and water.
Possible applications include blood flow, microfluidics, and other network flows governed by similar

principles.
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I. INTRODUCTION

Bistability and oscillations are ubiquitous in natural sys-
tems and occur on a variety of scales from the micro (e.g.,
microfluidics) to the macro (e.g., magma flow). While the
physics often differs, the necessary ingredients are a source
of nonlinearity and a feedback mechanism. For example, the
flow of droplets through microfluidic networks demonstrates
bistability and oscillations, even when the network boundary
conditions are fixed [1,2]. The source of nonlinearity and
feedback in this case is the hydrodynamic resistance due to
the presence of droplets in various parts of the network [3].
On the macroscale, bistability and oscillations have been pre-
dicted in models of magma flow due to either temperature-
dependent viscosity [4] (magma becomes more viscous as it
cools) or volatile-dependent viscosity [5] (magma becomes
more viscous as it loses water content). In these cases, the
existence of multiple solutions on the equilibrium pressure-
flow curve leads to bistability and spontaneous oscillations.

Bistability and oscillations in fluid networks are also key
ingredients for fluidic logic devices. In the last 10 years,
multiple researchers have demonstrated that microfluidic
memory, logic, and control devices can be constructed using
a single-phase fluid with elastic properties [6,7] or using
droplets or bubbles which form spontaneously when two im-
miscible fluids merge [8—10]. These recent studies are remi-
niscent of classic fluidic circuits which were quite common
in the 1960s [11]. In classic fluidics, the nonlinearity needed
to build devices such as logic gates and flip-flops comes
from inertial flow effects, which is not present in microflu-
idic systems.

Another important fluid network which may exhibit simi-
lar behavior is the microvascular network. Modeling and
simulation of microvascular blood flow involve a number of
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nonlinear rheological effects that are absent in larger vessels
(see [12] for a good review). The Fahraeus-Lindqvist effect
refers to the viscosity of blood as a function of both hemat-
ocrit (red blood cell volume concentration) and vessel diam-
eter. The apparent reduction in viscosity as diameter de-
creases is usually attributed to the existence of a lubricating
layer of plasma along the edge of the vessel. This lubricating
layer is also responsible for the plasma skimming effect
which describes the flow-dependent separation of blood at
diverging bifurcations.

Over the last 10 years, we have focused our attention on
analyzing the flow of blood through small networks of mi-
crovessels. We have demonstrated that, in a simple network
consisting of a single inlet, a loop and a single outlet mul-
tiple equilibria could exist and that steady-state solutions
could become unstable via a Hopf bifurcation to a limit cycle
oscillation [13,14]. We recently turned our attention to the
three-node network (Fig. 1) which consists of two inlets, a
loop, and one outlet. The flow in vessel C can be clockwise
or counterclockwise depending on the equilibrium state. Us-
ing models of the Fahraeus-Lindqvist effect and the plasma-
skimming effect appropriate for in vivo blood flow [15], we
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FIG. 1. Water enters through inlet 1 and a water-sucrose mixture
enters through inlet 2. The network can either be flow-driven or
pressure-driven. The flow in branch C can be either clockwise or
counterclockwise depending on the equilibrium flow distribution.
The outlet is held at a fixed pressure.
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have demonstrated that realistic network geometries exist
which can support flow in either direction in vessel C, i.e.,
bistability [16].

In this paper, we explore bistability in a system where
essentially all the complexities which exist in many of the
above studies have been removed. We consider the low Rey-
nolds number laminar flow of two ordinary miscible New-
tonian fluids of different viscosity in the simple network
shown in Fig. 1. Remarkably, we find theoretically and ex-
perimentally that bistability can exist in this system which, at
first glance, seems linear. However, when ordinary fluids
mix, the viscosity of the resulting mixture depends (nonlin-
early) on the relative volume fraction of each fluid and this
nonlinearity is sufficient to introduce bistability in the net-
work flow. After reviewing the model and the theoretical
predictions, we discuss the experimental setup and present
results which confirm our analysis. We end with a discussion
of the implications of these results.

II. MODEL

We explore flow in the simple three-node network shown
in Fig. 1. Two miscible fluids of different viscosities are
injected in inlets 1 and 2 at either fixed pressure or flow. The
outlet is held at a fixed pressure. The network model assumes
laminar, fully developed flow in each of the branches with
well-mixed fluid after junctions where the two fluids meet.
Similar results can be obtained even if the fluids do not mix
after junctions and we consider that case later in the paper.
Without loss of generality, we assume that the more viscous
fluid always occupies inlet 2.

We assume that the fluid obeys Poiseuille’s law such that
the pressure drop AP is proportional to the volumetric flow

0,

128 uL
aD*

AP=RQ= o, (1)

where R is the hydraulic resistance, D is the diameter of the
tube, L is the length of the tube, and w is the fluid viscosity.
For convenience, we will refer to the nominal resistance as
the part of the tube resistance which is only dependent on the
geometry and not the fluid, i.e., 128L/mD*. The total pres-
sure drop around the loop must be zero,

APA=APB+Apc, (2)

where AP, and APy are positive with the flow toward the
exit. While the direction of the flow in branch C may be in
either direction, we define AP to be positive when the flow
is counterclockwise, i.e., from inlet 1 to inlet 2. Since the
liquid is incompressible, the total flow rate into any junction
must also equal the flow rate out, namely, Q,=0,;—-0, and
0p=0,+0c. When the fluids mix at a node, their volumes
are additive such that we can compute the volume fraction of
fluid 2, ¢, in the resulting mixture. Using this volume frac-
tion to characterize the mixture composition means that ¢,
=0 and ¢,=1. When Q is positive (from inlet 1 to inlet 2),
the volume fraction in each tube is
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When Q¢ is negative (from inlet 2 to inlet 1), the volume
fraction in each tube is

__Qc
QC_QI’

The viscosity of the mixture can be captured using a modi-
fied Arrenhius law,

log(u) = (1 = N)log(u;) + N log(uy) + N(1 =N)d, (5)

where N is the mole fraction of fluid 2 and d is a fit param-
eter. The first two terms on the right-hand side are the classic
Arrenhius law and third term is an empirical correction fac-
tor [17]. We use this relationship to fit experimental data for
real mixtures [18].

Using Eq. (2) and the conservation of flow, the flow in C
can be expressed in terms of the inlet flow in 1 and 2,

R, - OsR
chle] A Q2 B‘ (6)
2+ R+ R

$a=0, ¢p= $hc=0. (3)

on ¢p=1, ¢c=1. (4)

In this way, Egs. (1)-(6) define a nonlinear, algebraic equa-
tion for the flow in branch C which is parameterized by the
inlet flows, the viscosity ratio between the fluids, and the
length and diameter of the tubes. It is possible to find net-
work parameters, i.e., tube lengths, diameters, and inlet fluid
viscosities such that the equilibrium flow in branch C dem-
onstrates hysteresis or bistability as the inlet flow rates are
varied. In Fig. 2(a), we show examples of the normalized
flow rate in branch C as a function of the ratio of the inlet
flow rates for different viscosity ratios. For low and high
inlet flow ratio values, the normalized flow in branch C is
unique, but there exists a set of inlet flow ratios which leads
to multiple equilibrium flow values in branch C. As the vis-
cosity ratio of the two fluids increases, the window where the
system exhibits bistability widens. The point where the flow
in branch C goes to zero is simply Q,/Q>=Rg/R,. For a
symmetric network where the nominal resistance in A and B
is equal, the flow in branch C goes to zero when Q/Q,
=,/ ;. This is the case in Fig. 2(a).

We may also drive the network by applying fixed pressure
at inlets 1 and 2, as opposed to a fixed flow. Under pressure-
driven conditions, Egs. (1)—(6) are supplemented with equa-
tions for the inlet pressures (relative to the exit pressure)

Pr_(Q1+Q)Rs + (01~ QR4+ OiR,
Py (Q1+Q)R;+(02+ Qc)Rp+ OsRy

Under pressure-driven conditions, the resistance of the inlet
and outlet tubes enters the formulation. However, if the equi-
librium flow in branch C demonstrates bistability under
flow-driven conditions, then bistability will be observed un-
der pressure-driven conditions about the point of zero flow in
branch C. In Fig. 2(b), we show examples of the equilibrium
curve for the flow in branch C as a function of the corre-
sponding inlet pressure ratio.

Under pressure-driven conditions, there exists a region of
bistability around the point where the flow in branch C goes

)
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FIG. 2. (Color online) (a) Normalized flow rate in branch C [Q/(Q;+Q,)] as a function of the inlet flow ratio Q,/Q, for different
viscosity ratios. Here we have taken the nominal resistance of every branch in the network to be equal, we assume a perfect Arrenhius law
for viscosity, and we assume that the fluids are otherwise identical except for their viscosity. Changing the nominal resistance of each branch
leads to qualitatively similar results. Results are shown for viscosity ratios of 1, 3, 5, 10, 20, and 200. Increasing the viscosity ratio increases
the width of the region of bistability. (b) Normalized flow rate in branch C as a function of the inlet pressure ratio P,/ P, for the same
viscosity ratios and conditions as in the flow case. The nominal resistance of the inlets and the outlet is set equal to the resistance in all other
branches. The values of P,/P, where the flow in branches C, 1, and 2 go to zero are denoted.

to zero. We also find a second region of bistability which
occurs around the point of zero flow in inlet branch 1. This
second region of bistability corresponds to backflow into the
supply reservoir 1, the low viscosity fluid. The points where
the flow in branches C, 1, and 2 go to zero are easily calcu-
lated. For a perfectly symmetric network, where all the
nominal resistances are equal, these points are defined by

P
0.=0 when —=1;
Py

0-0 wh P, 1
=0 when —=—;
! P, 2

Py
0,=0 when — =2. (8)
)
This result is easily generalized to any arbitrary network. We
are assuming a symmetric network here only for simplicity.

In Fig. 2(b), we show that when P,/P,>2, the flow is
into the network through branch 1 and out of the network
through branches 2 and 3, i.e., there is backflow into reser-
voir 2. In this domain, the dimensionless flow, Q/(Q,
+0,), has a unique value for a given pressure ratio P,/ P,,
which is the same for all viscosity ratios. When 1 <P,;/P,
<2, the flow is into the network from branches 1 and 2 and
the flow in C is also always positive. In this domain, there is
a unique value of Q. for a given pressure ratio, but its value
depends upon the viscosity contrast. When 0.5<P/P,<1,
the flow is still into the network through branches 1 and 2.
However, a region of bistability may occur in this domain in
which the flow in branch C can be either clockwise or coun-
terclockwise. The width of this region of bistability widens
as the viscosity ratio increases. When P,/P,<0.5, the flow
is into the network through branch 2 and a second region of
bistability exists with respect to the flow in branch 1. At

sufficiently low values of P/ P,, the flow is always into the
network through branch 2 and out of the network through
branches 1 and 3. For a viscosity ratio of 200 (left blue
curve), the point where the flow must always be going out of
the network at branch 1 occurs at P,/ P,=0.08. It is interest-
ing to note that at sufficiently high viscosity ratios, there may
exist five equilibrium flow conditions for a given pressure
ratio: three of which are stable and two of which are un-
stable. It was surprising to us to find such rich behavior in a
simple network under laminar flow with Newtonian fluids.
For the remainder of the paper, we concentrate on the bista-
bility region about the point Q-=0.

III. EXPERIMENTS

In order to test our prediction of bistability, we built a
simple and inexpensive experimental flow network. The flow
network was constructed with common 1/16-inch inner di-
ameter clear plastic tubing. The connections in the network
are made with barbed T fittings. In order to have well-mixed
flow in the tubes, we place static inline flow mixers right
after the T junctions in branches A and B. Without the mix-
ers, the two fluids remain stratified (they were not density
matched) which changes the switching points but does not
destroy the hysteresis.

Inlet tubes 1 and 2 are connected to a pressure source,
which is simply a large graduated cylinder filled to a set
level. The graduated cylinders act as our flow reservoirs and
the pressures of the reservoirs are known from hydrostatics.
The reservoir levels change slowly as the network drains, but
this draining can be offset by slowly pumping new fluid into
the reservoirs. Inlet 1 always contains pure water while inlet
2 consists of an aqueous sucrose solution of varying concen-
tration. Food coloring is added so that we can observe the
direction of flow in branch C as well as confirm mixing. The
relative lengths of the tubes were L =Ly, LC=%LB, and L,
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FIG. 3. (a) Sample equilibrium curve corresponding to the specific experimental network and a mass fraction of 60% sucrose in inlet 2.
The hysteresis loop (dashed line) and switching points (solid circles) are indicated. (b) Switching pressure ratios vs mass fraction of sucrose
in inlet 2 as determined experimentally (points) and as predicted by the model (lines). Below a concentration of approximately 30%, no
bistable behavior is expected or observed. Inset shows the relationship between mass fraction of sucrose in the solution and its viscosity
relative to water. Points on the inset are experimental data from [18] and solid curve is a fit using the modified Arrenhius law.

=L2=L3=%LB and we chose Lz=0.75 m for convenience.
The mixers were tested experimentally and their equivalent
resistance was approximately that of 0.375 m of additional
tubing. Before each experiment, we measured the viscosity
and density of the sucrose mixture in reservoir 2 to confirm
that it matches known data [18].

To observe bistability, the level of the sucrose solution in
reservoir 2 is maintained at a constant level. The level of the
water in reservoir 1 is initially high so that the fluid in branch
C is water, Q.>0, and flowing from 1 to 2. The level of the
water in reservoir 1 is allowed to drop slowly as the network
drains the reservoir, thus decreasing the pressure at inlet 1.
The rate at which the level of reservoir 1 falls is slow com-
pared to the time for the network to come to equilibrium. At
some point, we visually observe the flow in C to become
negative and start flowing from 2 to 1. We record the water
level in reservoir 1 at this point. The level of reservoir 1 is
then raised by slowly pumping water in such that the bistable
region can be confirmed. We find that the flow in C remains
negative for a sufficiently long time. As the level of reservoir
1 rises, the flow eventually switches direction back to Q.
>0 and we record the water level in reservoir 1 when this
occurs. An example of the experimental path is shown in Fig.
3(a); our experiment records the two switching points. Thus,
in this work, we concentrate only on the bistability region
around the point Q.=0.

We repeat the above experiment for a number of initial
sucrose concentrations (viscosities) in reservoir 2. A com-
parison of the experimental data compared to the model pre-
diction is shown in Fig. 3(b). We see good agreement be-
tween the model and experiment. For small sucrose
concentrations, there is no bistable window. As the sucrose
concentration (viscosity) exceeds a critical value, a bistable
window opens up and widens as the sucrose concentration is
further increased. The threshold sucrose concentration de-
pends on the specific geometry of the network and is ap-
proximately 30% mass fraction for our network, correspond-
ing to ,u/,uH20=3.

The existence of bistability depends on the network ge-
ometry and the viscosity of the inlet fluids. It is possible to

analytically determine whether a given network and fluid
combination can exhibit bistable behavior. The point where
the flow in C goes to zero is determined from Egq. (6),
O1R4=0,Rp. If the slope of the equilibrium flow-pressure
curve switches direction at this point, then a bistable window
will exist [see Fig. 3(a)]. The analysis (details can be found
in the Appendix) yields a simple criteria for the existence of
bistability

M L.D% L.D?
&{ln<&)m 2_1]> ADy  LcDy ©)

M1 M1/ paMy LBDf\ LBD‘é’

where p; is the mass density of fluid i and M, is the molar
mass of fluid i. The parameters on the left-hand side depend
only upon the fluids, while the parameters on the right-hand
side depend only upon the network geometry. If we apply
these criteria to our experimental network, we find that
LyD} LD
Ly} " LyDt
of sucrose to water in inlet 2 required to observe bistability
in this particular network is 29% which agrees well with our
experimental data. In addition, Eq. (9) gives a lower bound
on the viscosity contrast required to observe bistability in
any network obtained by making the left-hand side positive
and using the corresponding experimental values for the flu-
ids. For a water-sucrose solution, this value is approximately
2.3.

=1.13. The corresponding minimum mass fraction

IV. GENERALIZATION

Thus far, we have presented the prediction of bistability
under the special condition that the fluids are well mixed
after any junction. We presented this case first as it is the
most straightforward, simplest, and surprising manifestation
of a more general behavior. The analysis which led to Eq. (9)
can be generalized for any effective resistance of the tube
after two fluids merge. The more general criterion for bista-
bility is (see Appendix)
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FIG. 4. (Color online) (a) An example of the effective viscosity u/u; of two merged fluids assuming perfect mixing (red dashed-dotted
curve), perfect stratification (blue dashed curve), and some diffusion (black solid curve) as a function of volume fraction. In the diffusion
curve, we allowed the perfectly stratified interface to diffuse for 7=0.05, where time is scaled by square of the tube diameter divided by the
diffusivity. Here we plot the curves for a viscosity ratio of u,/u;=10 only as an example. Other viscosity ratios look qualitatively similar.
(b) Switching pressure ratio vs mass fraction of sucrose in inlet 2 as determined experimentally (points) and as predicted by the model (lines)
for different degrees of stratification. The model lines are shown for two immiscible fluids (blue dashed line), complete mixing (red dotted
curve), and some diffusion corresponding to a time of t=0.05 (black solid curve). The experiment is identical to the earlier one except the
mixers have been removed. Here we present data for one switching point for clarity. The switching point at P;/P,=1 is the trivial point
where Q=0 and the system behaves the same whether stratified or mixed.

LDy LDy
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where the viscosity of the mixture w is expressed in terms of
the volume fraction ¢. There is nothing in this expression
that is unique to an Arrenhius mixture law for the system to
exhibit bistability. Since the right-hand side of Eq. (10) must
always be positive, then bistability is possible in general as
long as d In(u)/de| g > 1. This result does reveal that bi-
stability is not possible for a mixture with viscosity linearly
dependent on volume fraction, e.g., weak suspensions.

The most practical extension of our experiment is to re-
move the mixers from the system. The mixers were intro-
duced only to create a model experimental system to confirm
the simple theory. If the fluid mixers are removed from the
junctions, we observed that the flow is stratified due to the
large density difference between the two fluids. Such a strati-
fied, unmixed flow would be more representative of laminar,
low Reynolds number flows, resulting from bringing two
streams together, especially in microfluidic applications. The
fully mixed case might only be expected in practice if the
diameters were extremely small and branches sufficiently
long such that molecular diffusion can mix the streams.
However, on the scale of many microfluidic networks, diffu-
sion times are often relatively slow.

To make predictions about stratified flow, we need to
know the effective mixture viscosity to replace the Arrenhius
law of Eq. (5). In the stratified flow case, the effective vis-
cosity is no longer a property of the fluid mixture, but be-
comes a property of the flow. We therefore must solve for the
velocity field in the tube to calculate the overall hydraulic
resistance.

A simple model defines a horizontal interface at an arbi-
trary location in a circular tube—fluid 1 and fluid 2 occupy

the regions above and below this interface. We assume the
flow is steady and fully developed in the axial direction, x,
and solve for the Navier-Stokes equations for the axial ve-
locity field, u, across the tube’s cross section for a unit pres-
sure drop. The full Navier-Stokes equations become quite
simplified in the steady, fully developed case

V(,uVu):C:i—Pz—l. (11)

The vector operators above are two dimensional and only
apply over a cross section of tubing. Numerically, we can
easily solve Eq. (11) using a commercial finite-element pack-
age, COMSOL MULTIPHYSICS. After solving Eq. (11), the flow
rates of the two fluids, Q; and Q,, are determined from in-
tegration of the velocity field. The overall hydraulic resis-
tance, and thus the effective viscosity, is R=1/(Q,+0,). We
then move the location of the horizontal interface between
the two fluids from the bottom of the tube to the top which
allows us to calculate the resistance as a function of the
volume fraction as shown by the blue dashed curve in Fig.
4(a). This simple calculation reproduces the resistance law
calculated by Gemmel and Epstein in 1962 [19]. The func-
tion shown in Fig. 4(a) then replaces the Arrenhius law of
Eq. (5). It is interesting to note that in the case of miscible
fluids, this model is relatively sensitive to even small
amounts of molecular diffusion. As an example, we take the
sharp interface and numerically allow it to diffuse for a short
fixed amount of time and then recalculate the resistance, as
shown by the black solid curve in Fig. 4(a). Our simple
diffusion model recovers the fully mixed result in the limit of
long diffusion times as shown by the red dash-dotted curve
in Fig. 4(a).

We repeat the experiments already presented by removing
the mixers which were placed after each junction. We ob-
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serve that the flow remains significantly stratified throughout
the length of the tube. We again record the switching point in
this stratified case where the flow spontaneously changes di-
rection in branch C. These data are shown in Fig. 4(b) and
are compared to the theoretical result assuming the fluids are
fully mixed, completely stratified, and allowed to diffuse. A
diffusion time of 0.05 agrees very well with our experimental
result. Of course, the true resistance law for miscible strati-
fied flow would need to account for diffusion as a function of
length down the tube, but our simple model seems to capture
the essential behavior. Switching still occurs at P;/P,=1
whether the mixers are present or not and we do not show
these data here for clarity.

V. CONCLUSIONS

We have demonstrated bistability in a simple fluid experi-
ment using two miscible fluids. Typical flow rates for our
experiments are such that the maximum Reynolds number in
any experiment was approximately 100 (though typically
much less) and laminar flow within the network is expected.
The only source of nonlinearity is the viscosity of the mix-
ture which is enough to lead to spontaneous flow switching
in the network. This prediction is robust and expected to
occur in a wide range of fluid systems. Although we built a
large scale network, our predictions are scale free and
equally apply to very small and very large diameter tubes as
long as the basic assumption of laminar flow is maintained.
Obviously, more complicated networks with more nodes
would be expected to display even more complicated behav-
ior.

Based on the simplicity of the theory and the excellent
agreement with experiments, we expect that Eq. (10) should
serve as a general criteria for observing bistability in differ-
ent applications. For example, we could extend our analysis
and experiments to account for different effects such as tur-
bulent flow, immiscible fluids, or concentrated suspensions.
We also note from Eq. (10) that if we take the limit of the
connecting branch C going to zero length, we can still obtain
bistability. This limit is the case of two inlets and two outlets
connected at a single node, which is similar to the microflu-
idic flip-flop studied by Groisman et al. [7]. Their flip-flop
required viscoelastic fluids whereas here we find bistability
in a similar geometry with Newtonian fluids of different vis-
cosities.

It is surprising to us that we can find no evidence that
these predictions and experiments have previously been
made or carried out. The experiments are simple to perform,
the calculations involve elementary mathematics, and the
physics has been well-established for over a century. This
system also provides a striking example of bistability in a
simple fluid network which, at first glance, does not seem to
have the essential nonlinear ingredient.

The existence of bistability in this simple network also
suggests that other networks could possibly be designed and
constructed to provide a variety of logic and control devices.
These preliminary experiments also do not rule out the pos-
sibility of observing dynamic behavior such as spontaneous
oscillations. Finally, our results may also have relevance for
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FIG. 5. Dimensionless flow in branch C, Q., vs dimensionless
flow in branch 1, Q; for a viscosity ratio of 10, and all nominal
resistances are equal.

microfluidic applications. In any device with even a simple
network involving fluids of different viscosities or concen-
trated suspensions, we show here that we cannot predict the
direction of flow in the network without knowing the flow’s
history.

APPENDIX: DERIVATION OF BISTABILITY CRITERION

In the text, we provide a simple criterion to determine
whether a given network and fluid combination can exhibit
bistability. In this section, we provide a detailed derivation
for the interested reader. The relationship between the flow in
branch C to the inlet flows was given in the text in Eq. (6). In
what follows, it simplifies matters to use dimensionless flow
rates where all flows are scaled by the total flow, O+ Q,. For
simplicity of notation, for the remainder of this appendix, all
flows are dimensionless though not annotated in any special
way. Under this scaling, Eq. (6) becomes

ORy—(1-0))Ry
Oc= ,
Ry+Rp+ R,

(A1)

where the dimensionless flow in C, Q-e[-1,1], and the
dimensionless flow in inlet 1, Q, €[0,1]. Without loss of
generality, we assume that the more viscous fluid always
occupies inlet 2.

An example of the equilibrium curve is shown in the
(Q1,0Q¢) plane in Fig. 5. If the more viscous solution occu-
pies inlet 2, then it can be shown that dQ,/dQ is always
positive as Q. approaches 0 from below. A necessary and
sufficient condition then for bistability is dQ;/dQ-<0 as Q¢
approaches 0 from above. Equation (A1) can be written as

Qc=¥0c.01),

where the nonlinear function ¢ is defined as

QiR —(1-0))Rg
Ry+Rp+ R,

for the three-node network. The derivative of Q. with re-
spect to Q is
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in which case dQ./dQ, reduces to
d0c _ v 3y iRy ddy
dQ, 90, JRpdPpdQ,

The derivatives are straightforward to compute and are given
by

(A2)

9 __Ra+tRp
90, Ry +Rp+R.

Y  —[Ry+(1-0QPR] -[1-(2,-00)]
Ry (Ry+Rz+Rc)?>  Ry+Rz+Rc

dQc
%_—QC—U—QI 20,

dQ,  [Qc+(1-0)F

>

dRp d In(ug)
- = RB— .
dop dop

We can replace the derivatives into Eq. (A2) and solve for
dQ,/dQc. In the limit as Q-— 0%, we obtain

¢B=1)

Since the denominator is always positive, the condition
dQ,/dQ <0 for bistability becomes

d In(up)
dég

Ry+Rc-+ RB(I -
dQ, _
dQc Ry+Rp
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d In(up)
"\ dey

—1) > R4+ Rc.
¢3=1

Recall that as Q-— 0 from above, p,=puc=p; and wp=pu,.
The expression can then be reduced to

&( din(pg) | 1) _ LaDj  LcDj
¢B=]

M dép LBDi LBDé 7
which is the general result quoted in the text.
The specific result quoted in the text for a fluid that obeys
an Arrenhius law can be derived as follows. The Arrenhius
law can be expressed as

(A3)

In(4) = In(psy) +N1n(ﬂ),
M

where N is the mole fraction of fluid 2. The derivative we are

looking for is then
)%
=ln| — | — .
¢=1 m/ de P=1

d In(u)
The relationship between volume fraction, ¢, and mole frac-

A4
de¢ (A4)
tion, N, is given as

P2
e P, B 1
B B 1 M,’
e (1- )P 1+(1——>ﬂ—2
M, M, ¢/ M, py

which implies that the derivative is
dLV _ piM,
do| sy pM;

Replacing Egs. (A4) and (A5) into Eq. (A3) recovers the
specific result quoted in the text

M
&{111(&)_131 2—l}>
M1 1/ paMy

(A5)

LDy LcDy

. (A6
LgD}  LgD¢ (46)
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