We study the detailed locomotor mechanics of a small, lightweight robot (DynaRoACH, 10 cm, 25 g) which can move on a granular substrate of closely packed 3 mm diameter glass particles at speeds up to 50 cm/s (5 body length/s), approaching the performance of small, highperforming, desert-dwelling lizards. To reveal how the robot achieves this high performance, we used high speed imaging to capture kinematics, and developed a numerical multi-body simulation of the robot coupled to an experimentally validated discrete element method (DEM) simulation of the granular media. Average forward speeds measured in both experiment and simulation agreed well, and increased non-linearly with stride frequency, reflecting a change in the mode of propulsion. At low frequencies, the robot used a quasi-static “rotary walking” mode, in which the granular material yielded as the legs penetrated and then solidified once vertical force balance was achieved. At high frequencies, duty factor decreased below 0.5 and aerial phases occurred. The propulsion mechanism was qualitatively different: the robot ran rapidly by utilizing the speed-dependent fluid-like inertial response of the material. We also used our simulation tool to vary substrate parameters that were inconvenient to vary in experiment (e.g., granular particle friction) to test performance and reveal limits of stability of the robot. Using small robots as physical models, our study reveals a mechanism by which small animals can achieve high performance on granular substrates, which in return advances the design and control of small robots in deformable terrains.